Complete Kneser Transversals

J. L. Ramírez Alfonsín

Université de Montpellier

joint work with
J. Chappelon, L. Martinez, L. Montejano, L.P. Montejano
Let us consider 8 points in \mathbb{R}^3 general position.
Let us consider 8 points in \mathbb{R}^3 general position.

Question: Is there a transversal line to all tetrahedra?
NEVER

- There are at most 3 points inside H
- There are at least 5 points outside H
- There are 3 points in the same side of H
Question: Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?
Question: Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS
Question: Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.
Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

By Helly, T_2 there exists a point y in the intersection of all tetrahedra in T_2.
Question: Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

By Helly, T_2 there exists a point y in the intersection of all tetrahedra in T_2.

So, the line passing through x and y gives the desired transversal.
Question : Let A be a set of 6 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?

ALWAYS

Let $x \in A$. Let T_1 be the set of tetrahedra containing x and let T_2 be the set of tetrahedra not containing x.

By Helly, T_2 there exists a point y in the intersection of all tetrahedra in T_2.

So, the line passing through x and y gives the desired transversal.

Question : Let A be a set of 7 points in \mathbb{R}^3 in general position. Is there a transversal line to all tetrahedra of A?
Introduction
Kneser hypergraphs
Rado’s central point theorem
Complete Kneser transversals
Radon partitions
Stability and instability
Some computational results

Sometimes YES

Sometimes NO
Kneser Transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

$m(k, d, \lambda) \overset{\text{def}}{=} \text{the maximum positive integer } n \text{ such that every set } X \text{ of } n \text{ points (not necessarily in general position) in } \mathbb{R}^d \text{ has the property that the convex hull of all } k\text{-set of } X \text{ have a transversal } (d - \lambda)\text{-plane (called Kneser Transversal).}$
Kneser Transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

$m(k, d, \lambda) \overset{\text{def}}{=} \text{the maximum positive integer } n \text{ such that every set } X \text{ of } n \text{ points (not necessarily in general position) in } \mathbb{R}^d \text{ has the property that the convex hull of all } k\text{-set of } X \text{ have a transversal } (d - \lambda)\text{-plane (called Kneser Transversal).}$

$M(k, d, \lambda) \overset{\text{def}}{=} \text{the minimum positive integer } n \text{ such that for every set of } n \text{ points in general position in } \mathbb{R}^d \text{ the convex hull of the } k\text{-sets does not have a transversal } (d - \lambda)\text{-plane.}$
• $m(k, d, \lambda) < M(k, d, \lambda)$.
\begin{itemize}
 \item $m(k, d, \lambda) < M(k, d, \lambda)$.
 \item $m(4, 3, 2) = 6$ and $M(4, 3, 2) = 8$.
\end{itemize}
• $m(k,d,\lambda) < M(k,d,\lambda)$.
• $m(4,3,2) = 6$ and $M(4,3,2) = 8$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$$M(k,d,\lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \geq \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \leq \lambda. \end{cases}$$
Kneser hypergraphs

A hypergraph H is a pair (V, \mathcal{H}) where V (vertices) is a finite set and \mathcal{H} (hyperedges) is a collection of subsets of V.
Kneser hypergraphs

A hypergraph H is a pair (V, \mathcal{H}) where V (vertices) is a finite set and \mathcal{H} (hyperedges) is a collection of subsets of V.

The Kneser hypergraph $K^{\lambda+1}(n, k)$ is the hypergraph (V, \mathcal{H}) where V is the collection of all k-elements subsets of a n-set and $\mathcal{H} = \{(S_1, \ldots, S_\rho)| 2 \leq \rho \leq \lambda + 1, \ S_1 \cap \cdots \cap S_\rho = \emptyset\}$.
Kneser hypergraphs

A hypergraph H is a pair (V, H) where V (vertices) is a finite set and H (hyperedges) is a collection of subsets of V.

The Kneser hypergraph $K^{\lambda+1}(n, k)$ is the hypergraph (V, H) where V is the collection of all k-elements subsets of a n-set and $H = \{(S_1, \ldots, S_\rho) | 2 \leq \rho \leq \lambda + 1, S_1 \cap \cdots \cap S_\rho = \emptyset\}$.

Remark Kneser graphs are obtained when $\lambda = 1$.

Knese hypergraph when $n = 5$, $k = 2$ and $\lambda = 1$ (Petersen graph)
A coloring of a hypergraph H is a function that assigns colors to the vertices such that no hyperedge of H is monochromatic.
A coloring of a hypergraph H is a function that assigns colors to the vertices such that no hyperedge of H is monochromatic.

A collection of vertices $\{S_1, \ldots, S_\rho\}$ of $K^{\lambda+1}(n, k)$ are in the same color class if and only if either

a) $\rho \leq \lambda + 1$ and $S_1 \cap \cdots \cap S_\rho \neq \emptyset$ or

b) $\rho > \lambda + 1$ and any $(\lambda + 1)$-subfamily $\{S_{i_1}, \ldots, S_{i_{\lambda+1}}\}$ of $\{S_1, \ldots, S_\rho\}$ is such that $S_{i_1} \cap \cdots \cap S_{i_{\lambda+1}} \neq \emptyset$.
Proposition (Arocha, Bracho, Montejano, R.A., 2011) If \(\chi(K_{\lambda+1}(n, k)) \leq d - \lambda + 1 \) then \(n \leq m(k, d, \lambda) \).
Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(K^{\lambda+1}(n, k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

$\chi(K^{\lambda+1}(n, k)) \leq n - k - \left\lceil \frac{k}{\lambda} \right\rceil + 2.$
Proposition (Arocha, Bracho, Montejano, R.A., 2011) If \(\chi(K^{\lambda+1}(n, k)) \leq d - \lambda + 1 \) then \(n \leq m(k, d, \lambda) \).

Theorem (Arocha, Bracho, Montejano, R.A., 2011)

\[
\chi(K^{\lambda+1}(n, k)) \leq n - k - \left\lceil \frac{k}{\lambda} \right\rceil + 2.
\]

Corollary (Arocha, Bracho, Montejano, R.A., 2011)

\[
d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1 \leq m(k, d, \lambda).
\]
Proposition (Arocha, Bracho, Montejano, R.A., 2011) If $\chi(K^{\lambda+1}(n, k)) \leq d - \lambda + 1$ then $n \leq m(k, d, \lambda)$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011) $\chi(K^{\lambda+1}(n, k)) \leq n - k - \lceil \frac{k}{\lambda} \rceil + 2$.

Corollary (Arocha, Bracho, Montejano, R.A., 2011) $d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1 \leq m(k, d, \lambda)$.

Corollary (Arocha, Bracho, Montejano, R.A., 2011)

$$\chi(K^{\lambda+1}(n, k)) > \begin{cases} n - 2k + \lambda & \text{if } k \geq \lambda, \\ n - 2k & \text{if } k \leq \lambda. \end{cases}$$
Proposition (Arocha, Bracho, Montejano, R.A., 2011) If \(\chi(K^{\lambda+1}(n, k)) \leq d - \lambda + 1 \) then \(n \leq m(k, d, \lambda) \).

Theorem (Arocha, Bracho, Montejano, R.A., 2011) \(\chi(K^{\lambda+1}(n, k)) \leq n - k - \lceil \frac{k}{\lambda} \rceil + 2 \).

Corollary (Arocha, Bracho, Montejano, R.A., 2011) \(d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1 \leq m(k, d, \lambda) \).

Corollary (Arocha, Bracho, Montejano, R.A., 2011)
\[
\chi(K^{\lambda+1}(n, k)) > \begin{cases}
 n - 2k + \lambda & \text{if } k \geq \lambda, \\
 n - 2k & \text{if } k \leq \lambda.
\end{cases}
\]

Theorem (Lovász) \(\chi(K^2(n, k)) = n - 2k + 2 \).
Conjecture $m(k, d, \lambda) = d - \lambda + k + \left\lceil \frac{k}{\lambda} \right\rceil - 1$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011) The conjecture is true if either

a) $d = \lambda$

b) $\lambda = 1$

c) $k \leq \lambda$

d) $\lambda = k - 1$

e) $k = 2, 3$.

J. L. Ramírez Alfonsín

Complete Kneser Transversals
Conjecture $m(k, d, \lambda) = d - \lambda + k + \lceil \frac{k}{\lambda} \rceil - 1$.

Theorem (Arocha, Bracho, Montejano, R.A., 2011)
The conjecture is true if either
a) $d = \lambda$ or
b) $\lambda = 1$ or
c) $k \leq \lambda$ or
d) $\lambda = k - 1$ or
e) $k = 2, 3$.
Rado’s central point theorem

Rado’s theorem If X is a bounded measurable set in \mathbb{R}^d then there exists a point $x \in \mathbb{R}^d$ such that

$$\text{measure}(P \cap X) \geq \frac{\text{measure}(X)}{d + 1}$$

for each half-space P that contains x.
Rado’s central point theorem

Rado’s theorem If X is a bounded measurable set in \mathbb{R}^d then there exists a point $x \in \mathbb{R}^d$ such that

$$\text{measure}(P \cap X) \geq \frac{\text{measure}(X)}{d + 1}$$

for each half-space P that contains x.

A generalization of the discrete version of Rado’s result.

Theorem (Arocha, Bracho, Montejano, R.A. 2011)
Let X be a finite set of n points in \mathbb{R}^d. Then, there is a $(d - \lambda)$-plane L such that any closed half-space H through L contains at least $\left\lfloor \frac{n-d+2\lambda}{\lambda+1} \right\rfloor + (d - \lambda)$ points of X.
Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$. $m^\ast(k, d, \lambda)$ def = the maximum positive integer n such that every set X of n points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all k-set of X have a transversal $(d - \lambda)$-plane containing $(d - \lambda) + 1$ points of X (called Complete Kneser Transversal).

We clearly have that $m^\ast(k, d, \lambda) \leq m(k, d, \lambda)$.
Complete Kneser transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.
Complete Kneser transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

$m^*(k, d, \lambda) \overset{\text{def}}{=} \text{the maximum positive integer } n \text{ such that every set } X \text{ of } n \text{ points (not necessarily in general position) in } \mathbb{R}^d \text{ has the property that the convex hull of all } k\text{-set of } X \text{ have a transversal } (d - \lambda)\text{-plane containing } (d - \lambda) + 1 \text{ points of } X \text{ (called Complete Kneser Transversal).}$
Complete Kneser transversal

Let $k, d, \lambda \geq 1$ be integers with $d \geq \lambda$.

$m^* (k, d, \lambda) \overset{\text{def}}{=} \text{the maximum positive integer } n \text{ such that every set } X \text{ of } n \text{ points (not necessarily in general position) in } \mathbb{R}^d \text{ has the property that the convex hull of all } k\text{-set of } X \text{ have a transversal } (d - \lambda)\text{-plane containing } (d - \lambda) + 1 \text{ points of } X \text{ (called Complete Kneser Transversal).}$

We clearly have that

$$m^* (k, d, \lambda) \leq m (k, d, \lambda)$$
Proposition $m^*(k, d, k) = d$.
Proposition $m^*(k, d, k) = d$.

Proof (easy): For any set of d or less points in \mathbb{R}^d choose any set T with $d - k + 1$ points. Then, $\text{aff}(T)$ is a complete Kneser transversal since T have non-empty intersection with any k-set.
Proposition $m^*(k, d, k) = d$.

Proof (easy) : For any set of d or less points in \mathbb{R}^d choose any set T with $d - k + 1$ points. Then, $\text{aff}(T)$ is a complete Kneser transversal since T have non-empty intersection with any k-set.

On the other hand, if we choose $d + 1$ affinely independent points in \mathbb{R}^d then any $(d - k + 1)$-set T will leave k points in its complement, and thus $\text{aff}(T)$ cannot be a complete Kneser transversal.
Proposition $m^*(k, d, k) = d$.

Proof (easy): For any set of d or less points in \mathbb{R}^d choose any set T with $d - k + 1$ points. Then, $\text{aff}(T)$ is a complete Kneser transversal since T have non-empty intersection with any k-set.

On the other hand, if we choose $d + 1$ affinely independent points in \mathbb{R}^d then any $(d - k + 1)$-set T will leave k points in its complement, and thus $\text{aff}(T)$ cannot be a complete Kneser transversal.

• We assume $k \geq \lambda + 1$.
Proposition $m^*(k, d, k) = d$.

Proof (easy): For any set of d or less points in \mathbb{R}^d choose any set T with $d - k + 1$ points. Then, $\text{aff}(T)$ is a complete Kneser transversal since T have non-empty intersection with any k-set.

On the other hand, if we choose $d + 1$ affinely independent points in \mathbb{R}^d then any $(d - k + 1)$-set T will leave k points in its complement, and thus $\text{aff}(T)$ cannot be a complete Kneser transversal.

- We assume $k \geq \lambda + 1$.
- It turns out that the function m^* has two different behaviours:

 $$\alpha(d, \lambda) = \frac{\lambda - 1}{\left\lfloor \frac{d}{2} \right\rfloor} \geq 1$$

 $$\alpha(d, \lambda) = \frac{\lambda - 1}{\left\lfloor \frac{d}{2} \right\rfloor} < 1$$
Radon’s theorem Let X be a set of $d + 2$ points in \mathbb{R}^d in general position. Then, there exists a unique partition $X = X_1 \cup X_2$ such that $\text{conv}(X_1) \cap \text{conv}(X_2) \neq \emptyset$.
Radon’s theorem Let X be a set of $d + 2$ points in \mathbb{R}^d in general position. Then, there exists a unique partition $X = X_1 \cup X_2$ such that $\text{conv}(X_1) \cap \text{conv}(X_2) \neq \emptyset$.

Lemma Let X be any set of $d + 2$ distinct points in \mathbb{R}^d and let $\lfloor \frac{d+2}{2} \rfloor \leq t \leq d + 1$. Then, X can be partitioned into disjoint sets S and T such that $|T| = t$ and $\text{conv}(S) \cap \text{aff}(T) \neq \emptyset$.
Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.
Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.

Proof: Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d.

J. L. Ramírez Alfonsín
Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.

Proof : Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d.

• Since $k \geq \lambda + 1$ then $|X| \geq d + 2$. Let Y be a $(d + 2)$-subset of X.
Theorem If \(\alpha(d, \lambda) < 1 \) then \(d - \lambda + 1 + k \leq m^*(k,d,\lambda) \).

Proof: Let \(X \) be a collection of \(d - \lambda + 1 + k \) points in \(\mathbb{R}^d \).

- Since \(k \geq \lambda + 1 \) then \(|X| \geq d + 2 \). Let \(Y \) be a \((d + 2) \)-subset of \(X \).
- Since \(\alpha(d, \lambda) < 1 \) then \(\left\lfloor \frac{d+2}{2} \right\rfloor \leq d - \lambda + 1 \leq d + 1 \).
Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.

Proof: Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d.

- Since $k \geq \lambda + 1$ then $|X| \geq d + 2$. Let Y be a $(d + 2)$-subset of X.
- Since $\alpha(d, \lambda) < 1$ then $\lfloor \frac{d+2}{2} \rfloor \leq d - \lambda + 1 \leq d + 1$.
- By Lemma, the set Y can be partitioned into disjoint sets S and T such that $|T| = d - \lambda + 1$ and $\text{conv}(S) \cap \text{aff}(T) \neq \emptyset$.

J. L. Ramírez Alfonsín
Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.

Proof: Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d.

- Since $k \geq \lambda + 1$ then $|X| \geq d + 2$. Let Y be a $(d + 2)$-subset of X.
- Since $\alpha(d, \lambda) < 1$ then $\left\lfloor \frac{d+2}{2} \right\rfloor \leq d - \lambda + 1 \leq d + 1$.
- By Lemma, the set Y can be partitioned into disjoint sets S and T such that $|T| = d - \lambda + 1$ and $\text{conv}(S) \cap \text{aff}(T) \neq \emptyset$.
- We claim that $\text{aff}(T)$ is a complete Kneser transversal for X.
Theorem If $\alpha(d, \lambda) < 1$ then $d - \lambda + 1 + k \leq m^*(k, d, \lambda)$.

Proof: Let X be a collection of $d - \lambda + 1 + k$ points in \mathbb{R}^d.

- Since $k \geq \lambda + 1$ then $|X| \geq d + 2$. Let Y be a $(d + 2)$-subset of X.
- Since $\alpha(d, \lambda) < 1$ then $\left\lfloor \frac{d+2}{2} \right\rfloor \leq d - \lambda + 1 \leq d + 1$.
- By Lemma, the set Y can be partitioned into disjoint sets S and T such that $|T| = d - \lambda + 1$ and $\text{conv}(S) \cap \text{aff}(T) \neq \emptyset$.
- We claim that $\text{aff}(T)$ is a complete Kneser transversal for X. Since $|X| = d - \lambda + 1 + k$ then there is exactly one k-set not intersected by T. But this k-set contains S for which $\text{conv}(S) \cap \text{aff}(T) \neq \emptyset$.
Cyclic polytope

The cyclic polytope is the convex hull of a finite set of points in the moment curve in \mathbb{R}^d (defined as the map $\gamma : \mathbb{R} \to \mathbb{R}^d, t \mapsto (t, t^2, \ldots, t^d)$).
Cyclic polytope

The **cyclic polytope** is the convex hull of a finite set of points in the **moment curve** in \(\mathbb{R}^d \) (defined as the map \(\gamma : \mathbb{R} \to \mathbb{R}^d, t \mapsto (t, t^2, \ldots, t^d) \)).

Let \(k, d, \lambda \geq 1 \) be integers with \(d \geq \lambda \).

\[\eta(k, d, \lambda) \overset{\text{def}}{=} \text{the maximum number of vertices that the cyclic polytope in } \mathbb{R}^d \text{ can have, so that it has a complete Kneser } (d - \lambda)\text{-transversal to the convex hull of its } k\text{-sets of vertices.} \]
Cyclic polytope

The cyclic polytope is the convex hull of a finite set of points in the moment curve in \(\mathbb{R}^d \) (defined as the map \(\gamma : \mathbb{R} \to \mathbb{R}^d, t \mapsto (t, t^2, \ldots, t^d) \)).

Let \(k, d, \lambda \geq 1 \) be integers with \(d \geq \lambda \).

\[\eta(k, d, \lambda) \overset{\text{def}}{=} \text{the maximum number of vertices that the cyclic polytope in } \mathbb{R}^d \text{ can have, so that it has a complete Kneser } (d - \lambda)\text{-transversal to the convex hull of its } k\text{-sets of vertices.} \]

\[m^*(k, d, \lambda) \leq \eta(k, d, \lambda) \]
Theorem If $\alpha(d, \lambda) \geq 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$.
Theorem If $\alpha(d, \lambda) \geq 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$.
Let $\beta(\lambda, j) = \frac{j + \lambda - 1}{2}$ for each j with $j + \lambda$ odd.
Theorem If \(\alpha(d, \lambda) \geq 1 \) then \(m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda) \).

Let \(\beta(\lambda, j) = \frac{j + \lambda - 1}{2} \) for each \(j \) with \(j + \lambda \) odd.

\[
z(k, d, \lambda) \overset{\text{def}}{=} d - \lambda + 1 + \max_{\substack{j \in \{\lambda + 1, \ldots, d - \lambda + 2\} \atop j + \lambda \text{ is odd}}} \left(\left\lfloor \frac{k - 1}{\beta(\lambda, j)} \right\rfloor \right) \cdot j + (k - 1) \mod_{\beta(\lambda, j)}
\]

\[
Z(k, d, \lambda) \overset{\text{def}}{=} d - \lambda + 1 + \left\lfloor (2 - \alpha(d, \lambda))(k - 1) \right\rfloor
\]
Theorem If $\alpha(d, \lambda) \geq 1$ then $m^*(k, d, \lambda) = d - \lambda + 1 = \eta(k, d, \lambda)$.

Let $\beta(\lambda, j) = \frac{j + \lambda - 1}{2}$ for each j with $j + \lambda$ odd.

$$z(k, d, \lambda) \overset{\text{def}}{=} d - \lambda + 1 + \max_{j \in \{\lambda + 1, \ldots, d - \lambda + 2\}} \left(\left\lfloor \frac{k - 1}{\beta(\lambda, j)} \right\rfloor \right) \cdot j + (k - 1) \mod \beta(\lambda, j)$$

$$Z(k, d, \lambda) \overset{\text{def}}{=} d - \lambda + 1 + \left\lfloor (2 - \alpha(d, \lambda))(k - 1) \right\rfloor$$

Theorem If $\alpha(d, \lambda) < 1$ then $z(k, d, \lambda) \leq \eta(k, d, \lambda) \leq Z(k, d, \lambda)$.
Asymptotics

Theorem If \(\alpha(d, \lambda) < 1 \) then \(\lim_{k \to \infty} \frac{\eta(k, d, \lambda)}{k} = 2 - \alpha(d, \lambda) \).
Asymptotics

Theorem If $\alpha(d, \lambda) < 1$ then $\lim_{k \to \infty} \frac{\eta(k, d, \lambda)}{k} = 2 - \alpha(d, \lambda)$.

Corollary If $\alpha(d, \lambda) < 1$ then $m^*(k, d, 2) < m(k, d, 2)$ for k large enough and $d \geq 3$.
Question: Is the existence of a Kneser Transversal invariant of the order type?
Question: Is the existence of a Kneser Transversal invariant of the order type? NO
Stability and instability

A Kneser transversal is said to be stable (resp. instable) if the given set of points can be slightly perturbated (move each point to, not more than $\epsilon > 0$ distance of their original position) such that the new configuration of points admits (if there is any) only complete Kneser transversals (resp. the new configuration of points does not admit a Kneser transversal).
Codimension 2 and 3

Theorem Let $X = \{x_1, x_2, \ldots, x_n\}$ be a collection of $n = d + 2(k - \lambda)$ points in general position in \mathbb{R}^d. Suppose that L is a $(d - \lambda)$-plane transversal to the convex hulls of all k-sets of X with $\lambda = 2, 3$ and $k \geq \lambda + 2$ and $d \geq 2(\lambda - 1)$. Then, either

1. L is a complete Kneser transversal (i.e., it contains $d - \lambda + 1$ points of X) or
2. $|L \cap X| = d - 2(\lambda - 1)$ and the other $2(k - 1)$ points of X are matched in $k - 1$ pairs in such a way that L intersects the corresponding closed segments determined by them.
Theorem Let $\epsilon > 0$ and let $X = \{x_1, \ldots, x_n\}$ be a finite collection of points in \mathbb{R}^d. Suppose that $n = d + 2(k - \lambda)$, $k - \lambda \geq 2$ and $\lambda = 2, 3$. Then, there exists $X' = \{x'_1, \ldots, x'_n\}$, a collection of points in \mathbb{R}^d in general position such that $|x_i - x'_i| < \epsilon$, for every $i = 1, \ldots, n$, and with the property that every transversal $(d - \lambda)$-plane to the convex hull of the k-sets of X' is complete (i.e., it contains $d - \lambda + 1$ points of X').
Theorem Let $\epsilon > 0$ and let $X = \{x_1, \ldots, x_n\}$ be a finite collection of points in \mathbb{R}^d. Suppose that $n = d + 2(k - \lambda)$, $k - \lambda \geq 2$ and $\lambda = 2, 3$. Then, there exists $X' = \{x'_1, \ldots, x'_n\}$, a collection of points in \mathbb{R}^d in general position such that $|x_i - x'_i| < \epsilon$, for every $i = 1, \ldots, n$, and with the property that every transversal $(d - \lambda)$-plane to the convex hull of the k-sets of X' is complete (i.e., it contains $d - \lambda + 1$ points of X').

Theorem Let $\lambda = 2, 3$, $k - \lambda \geq 2$ and $d \geq 2(\lambda - 1)$. Then,

$$m(k, d, \lambda) < d + 2(k - \lambda).$$
Some computational results

We know that $m(4, 3, 2) = 6$ and $M(4, 3, 2) = 8$.
Some computational results

We know that $m(4, 3, 2) = 6$ and $M(4, 3, 2) = 8$.

Question What about transversal lines to all tetrahedra in configurations of 7 points in \mathbb{R}^3?
Complete Kneser lines: determined by oriented matroids
Complete Kneser lines: determined by oriented matroids
Kneser lines: a bit more complicated

Representation in \mathbb{R}^3

Projection in \mathbb{R}^2
Theorem Among the 246 different order types of 7 points in general position in \mathbb{R}^3 there are:

$A = 124$ admitting a complete Kneser line to the tetrahedra.

$B = 124$ admitting a representation for which there is a non-complete Kneser line to the tetrahedra.

We have $|A \cap B| = 46$, $|A \setminus B| = |B \setminus A| = 78$ and $|A \cup B| = 44$. Moreover, for each of the 78 order types of $B \setminus A$ there exists a representation for which there is no Kneser transversal line.