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Abstract

Gibbs random fields play an important role in statistics, however, the resulting
likelihood is typically unavailable due to an intractable normalizing constant. Com-
posite likelihoods offer a principled means to construct useful approximations. This
paper provides a mean to calibrate the posterior distribution resulting from using a
composite likelihood and illustrate its performance in several examples.

1 Introduction

Gibbs random fields play an important and varied role in statistics. The autologistic model
is used to model the spatial distribution of binary random variables defined on a lattice or
grid (Besag, 1974). The exponential random graph model or p∗ model is arguably the most
popular statistical model in social network analysis (Robins et al., 2007). Other application
areas include biology, ecology and physics.

Despite their popularity, Gibbs random fields present considerable difficulties from the
point of view of parameter estimation, because the likelihood function is typically intractable
for all but trivially small graphs. One of the earliest approaches to overcome this difficulty is
the pseudolikelihood method (Besag, 1975), which replaces the joint likelihood function by
the product of full-conditional distributions of all nodes. It is natural to consider generaliza-
tions which refine pseudolikelihood by considering products of larger collections of variables.
The purpose of this paper is to consider such composite likelihood methods. In particular, we
are interested in their use for Bayesian inference. Friel (2012) focused on a similar problem
and studied how the size of the collections of variables influence the resulting approximate
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posterior distribution. Our main contribution is to present an approach to calibrate the
posterior distribution resulting from using a mis-specified likelihood function.

This paper is organised as follows. Section 2 outlines a description of Gibbs random
fields, and in particular the autologistic distribution. Composite likelihoods are introduced in
Section 3. Here we focus especially on how to formulate conditional composite likelihoods for
application to the autologistic model. We also focus on the issue of calibrating the composite
likelihood function for use in a Bayesian context. Section 5 illustrates the performance of the
various estimators for simulated data. The paper concludes with some remarks in Section 6.

2 Discrete-valued Markov random fields

A Markov random field y is a family of random variables yi indexed by a finite set S =
{1, . . . , n} of nodes of a graph and taking values from a finite state space Y . Here the depen-
dence structure is given by an undirected graph G which defines an adjacency relationship
between the nodes of S : by definition i and j are adjacent if and only if they are directly
connected by an edge in the graph G . The likelihood of y given a vector of parameters
θ = (θ1, . . . , θd) is defined as

f (y | θ) ∝ exp(θT s(y)) := q(y|θ), (1)

where s(y) = (s1(y), . . . , sd(y)) is a vector of sufficient statistics. However a major issue
arises due to the fact that the normalizing constant in (1),

z(θ) =
∑
y∈Y

exp(θT s(y)),

depends on the parameters θ, and is a summation over all possible realisation of the Gibbs
random field. Clearly, z(θ) is intractable for all but trivially small situations. This poses
serious difficulties in terms of estimating the parameter vector θ.

One of the earliest approaches to overcome the intractability of (1) is the pseudolikelihood
method (Besag, 1975) which approximates the joint distribution of y as the product of full-
conditional distributions for each yi,

fpseudo (y) =
n∏
i=1

f(yi|y−i, θ),

where y−i denotes y\{yi}. This approximation has been shown to lead to unreliable estimates
of θ, see for example, Rydén and Titterington (1998), Friel et al. (2009). This is in fact one
of the earliest composite likelihood approximations, and we will outline work in this area
further in Section 3.

The autologistic model, first proposed by Besag (1972), is defined on a regular lattice of
size m×m′, where n = mm′. It is used to model the spatial distribution of binary variables,
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taking values −1, 1. The autologistic model is defined in terms of two sufficient statistics,

s0(y) =
n∑
i=1

yi, s1(y) =
n∑
j=1

∑
i
G∼j

yiyj,

where the notation i
G∼ j means that lattice point i is connected to lattice point j in G .

Following this notation, the normalizing constant of an autologistic model should be written
z(θ,G ), highlighting that it also depends on a graph of dependency. Henceforth we assume
that the lattice points have been indexed from top to bottom in each column and where
columns are ordered from left to right. For example, for a first order neighbourhood model
an interior point yi has neighbours {yi−m, yi−1, yi+1, yi+m}. Along the edges of the lattice
each point has either 2 or 3 neighbours. The full-conditional of yi can be written as

f(yi|y−i, θ) ∝ exp(θ0yi + θ1yi(yi−m + yi−1 + yi+1 + yi+m)), (2)

where y−i denotes y excluding yi. As before, the conditional distribution is modified along
the edges of the lattice. The Hammersley-Clifford theorem (Besag, 1974) shows the equiv-
alence between the model defined in (2) and in (1). The parameter θ0 controls the relative
abundance of −1 and +1 values and the parameter θ1 controls the level of spatial aggregation.
Note that the Ising model is a special case, resulting from θ0 = 0.

The auto-models of Besag (1974) allow variations on the level of dependencies between
edges and a potential anisotropy can be introduced on the graph. Indeed, consider a set
of graphs {G1, . . . ,Gd}. Each graph of dependency Gk induces a summary statistic sk(y) =∑n

j=1

∑
i
Gk∼ j

yiyj. For example, one can consider an anisotropic configuration of a first order

neighbourhood model: that is edges of G1 are all the vertical edges of the lattice and edges of
G2 are all the horizontal ones. Then an interior point yi has neighbours {yi−1, yi+1} according
to G1 and {yi−m, yi+m} according to G2. Along the edges of the lattice each point has either
1 or 2 neighbours. This allows to set an interaction strength that differs according to the
direction.

3 Composite likelihoods

There has been considerable interests in composite likelihoods in the statistics literature.
See, Varin et al. (2011) for a recent overview. Our primary objective is to work with a
realisation from an autologistic distribution y. According to the previous section we denote
S = {1, . . . ,mm′} as an index set for the lattice points. Following Asuncion et al. (2010)
we consider a general form of composite likelihood written as

fCL (y | θ) =
C∏
i=1

f(yAi
| yBi

, θ).

Some special cases arise:
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1. Ai = A, Bi = ∅, C = 1 corresponds to the full likelihood.

2. Bi = ∅ is often termed marginal composite likelihood.

3. Bi = A \ Ai is often termed conditional composite likelihood.

The focus of this paper is on conditional composite likelihoods, since the autologistic dis-
tribution is defined in terms of conditional distributions. Note that the pseudolikelihood
is a special case of 3. where each Ai is a singleton. We restrict each Ai to be of the same
dimension and in particular to correspond to contiguous square ’blocks’ of lattice points of
size k × k. In terms of the value of C in case 3., an exhaustive set of blocks would result
in C = (m − k + 1) × (n − k + 1). In particular, we allow the collection of blocks {Ai} to
overlap with one another.

3.1 Bayesian inference using composite likelihoods

The focus of interest in Bayesian inference is the posterior distribution

p(θ|y) ∝ f (y | θ) p(θ). (3)

Our proposal here is to replace the true likelihood f (y | θ) with a conditional composite
likelihood, leading us to focus on the approximated posterior distribution

pCL(θ | y) ∝ fCL (y | θ) p(θ).

Surprisingly, there is very little literature on the use of composite likelihoods in the Bayesian
setting, although Pauli et al. (2011) present a discussion on the use of conditional composite
likelihoods. Indeed this paper suggests, following Lindsay (1988), that a composite likelihood
should take the general form

fCL (y | θ) =
C∏
i=1

f(yAi
| yBi

, θ)wi , (4)

where wi are positive weights. In related work, Friel (2012) examined composite likelihood
for various block sizes when wi = 1. Our paper deals with the issue of calibrating the
weights. Before focusing on the tuning of wi, we highlight here the empirical observation
that non-calibrated composite likelihood leads to an approximated posterior distribution
with substantially lower variability than the true posterior distribution, leading to overly
precise precision about posterior parameters, see Figure 1.

3.2 Computing full-conditional distributions of Ai

The conditional composite likelihood which we described above relies on evaluating

f(yAi
|y−Ai

, θ) =
exp (θ0s0(yAi

) + s1(yAi
| y−Ai

))

z(θ,G , yAi
)

, (5)
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where
s0(yAi

) =
∑
j∈Ai

yj, s1(yAi
|y−Ai

) =
∑
j∈Ai

∑
`
G∼j

y`yj.

Also the normalizing constant now includes the argument yAi
emphasising that it involves a

summation over all possible realisations of sub-lattices defined on the set Ai and conditioned
on the realised y−Ai

, that is conditioned by all the lattice point of y−Ai
connected to a

lattice point of yAi
by an edge of G . First we describe an approach to compute the overall

normalizing constant for a lattice, without any conditioning on a boundary.
Generalised recursions for computing the normalizing constant of general factorisable

models such as the autologistic models have been proposed by Reeves and Pettitt (2004).
This method applies to autologistic lattices with a small number of rows, up to about 20,
and is based on an algebraic simplification due to the reduction in dependence arising from
the Markov property. It applies to un-normalized likelihoods that can be expressed as a
product of factors, each of which is dependent on only a subset of the lattice sites. We can
write q(y | θ) in factorisable form as

q(y | θ) =
n∏
i=1

qi(yi | θ),

where each factor qi depends on a subset yi = yi, yi+1, . . . , yi+m of y, where m is defined to
be the lag of the model. We may define each factor as

qi(yi, θ) = exp{θ0yi + θ1yi(yi+1 + yi+m)} (6)

for all i, except when i corresponds to a lattice point on the last row or last column, in which
case yi+1 or yi+m, respectively, drops out of (6).

As a result of this factorisation, the summation for the normalizing constant,

z(θ,G ) =
∑
y

n∏
i=1

qi(yi | θ)

can be represented as

z(θ,G ) =
∑
yn

qn(yn | θ) · · ·
∑
y1

q1(y1 | θ) (7)

which can be computed much more efficiently than the straightforward summation over the
2n possible lattice realisations. Full details of a recursive algorithm to compute the above
can be found in Reeves and Pettitt (2004). Note that this algorithm was extended in Friel
and Rue (2007) to also allow exact draws from f(y|θ)

The minimum lag representation for an autologistic lattice with a first order neighbour-
hood occurs for r given by the smaller of the number of rows or columns in the lattice. Iden-
tifying the number of rows with the smaller dimension of the lattice, the computation time
increases by a factor of two for each additional row, but linearly for additional columns. It is
straightforward to extend this algorithm to allow one to compute the normalizing constant
in (5), so that the summation is over the variables yAi

and each factor involves conditioning
on the set y−Ai

.
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4 Bayesian composite likelihood adjustments

Approximating the true posterior distribution by remplacing the true likelihood by the com-
posite likelihood leads to misspecification in the mean and variance of approximate posterior
distribution as shown in Figure 1. The aim of the following Section is to establish identities
that links the gradient and the Hessian of the log-posterior for θ to the moments of sufficient
statistics with respect to the distribution of the Gibbs random field, whereupon we use these
identities to calibrate the weights wi in (4).

4.1 An estimation of the gradient and curvature of the posterior
distribution

Using (3) as a starting point, we can write the gradient of the log-posterior for θ as

∇ log p (θ | y) = s(y)−∇z(θ,G ) +∇ log p(θ).

It is straightforward to show that

∇z(θ,G ) = Ey|θs(y),

hence the gradient of the log-posterior for θ can be written as a sum of moments of s(y),
namely

∇ log p (θ | y) = s(y)− Ey|θs(y) +∇ log p(θ). (8)

Taking the partial derivatives of the previous expression yields similar identity for the Hessian
matrix of the log-posterior for θ,

H log p (θ | y) = −Ky|θ(s(y)) + H log p(θ), (9)

where Ky|θ(s(y)) denotes the covariance matrix of s(y) when y has distribution f (y | θ).
Similar to (8) and (9), one can express the gradient and Hessian of the log-posterior log pCL(θ |
y) in terms of moments of the sufficient statistics.

4.2 Mean adjustment

The mean adjustment aims to ensure that the posterior and the approximated posterior
distributions have the same maximum. Thus, the adjustment here is simply the substitution

pCL(θ | y) = pCL(θ − θ∗ + θ∗CL | y),

where θ∗ and θ∗CL, is the maximum a posteriori (MAP) of the posterior distribution p (θ | y)
and the approximated posterior distribution pCL(θ | y), respectively.

Addressing the issue of estimation of θ∗ and θ∗CL, we note generally from equation (9)
that log p (θ | y) and log pCL(θ | y) are not concave functions. However the Hessian of the
log-likelihood is a semi-negative matrix and so is unimodal. A reasonable choice of prior,
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for example with a semi-negative Hessian matrix, will thus lead to a unimodal posterior
distribution. Care must be taken to ensure convergence of the optimisation algorithms to
θ∗ and θ∗CL. In particular, we remark that since the approximate posterior distribution
is typically very sharp around the MAP, as shown in Figure 1, it can be difficult to ensure
convergence of gradient based algorithms in reasonable computational time. However, in our
experiments we have found that using a BFGS algorithm which is based on a Hessian matrix
approximation using rank-one updates calculated from approximate gradient evaluations,
provided good performance in our context. Note that in practice, the gradient evaluated in
the algorithm is stochastic and based on a standard Monte Carlo estimator of the expectation
Ey|θsj(y).

Algorithm 1: MAP estimation

Input: A lattice y
Output: Estimators θ̂∗ of θ∗ and θ̂∗CL of θ∗CL

estimate θ∗CL using a BFGS algorithm based on Monte Carlo estimator of
∇ log pCL(θ | y);
estimate θ∗ using a BFGS algorithm based on Monte Carlo estimator of
∇ log pCL(θ | y) and starting from θ̂∗CL;

return θ̂∗ and θ̂∗CL;

Estimating θ̂∗ using a random initialization point in BFGS algorithm (see Algorithm 1)
is inefficient. Indeed, estimating Ey|θs(y) is the most cumbersome part of the algorithm and

should be done as little as possible. Despite that θ̂∗CL is not equal to θ̂∗ it is usually close
and turns out to yield a good initialization to the second BFGS algorithm.

4.3 Magnitude adjustment

The general approach we propose to adjust the covariance of the approximated posterior is
to temper the conditional composite likelihood with some weights wi in order to modify its
curvature around the mode. We remark that the curvature of a scalar field at its maximum
is directly linked to the Hessian matrix. Based on that observation, our proposal is to choose
wi such that

H log p(θ∗ | y) = H log pCL(θ∗CL | y).

Note in our context, there exists no particular reason to weight each blocks differently.
Consequently we assume that each block has the same weight and we denote it w.

For the sake of simplicity, assume a uniform prior but everything can be easily written
for any prior. When θ is a scalar parameter, writing identity (9) for p (θ | y) and pCL(θ | y)
yields

w =
Vary|θ∗(s(y))∑C

i=1 VaryAi
|θ∗CL

(s(yAi
| y−Ai

))
. (10)
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However this approach does not apply when dealing with autologistic models since θ ∈ Rd

is a vector. We thus have a scalar constraint for an equality between the two matrices

Ky|θ∗(s(y)) = w
C∑
i=1

Ky|θ∗CL
(s(yAi

| y−Ai
)).

In Table 1 we consider some possible identities that are natural to consider in order to choose
a reasonable value for w. The options w(3) and w(4) include only the information contained
in the diagonal of each matrix whereas options w(1), w(2) and w(5) take advantage of all the
information of the covariance matrix.

Table 1: Weight options for a magnitude adjustment when θ ∈ Rd

w(1):

 det
[
Ky|θ∗(s(y))

]
det
[∑C

i=1Ky|θ∗CL
(s(yAi | y−Ai))

]


1/d

w(2):
1

d
tr

Ky|θ∗(s(y))

(
C∑
i=1

Ky|θ∗CL
(s(yAi | y−Ai))

)−1

w(3):
1

d
·

d∑
i=1

Vary|θ∗(si(y))∑C
i=1 Vary|θ∗CL

(sj(yAi | y−Ai))

w(4):
tr
[
Ky|θ∗(s(y))

]
tr
[∑C

i=1Ky|θ∗CL
(s(yAi | y−Ai))

]

w(5):

√√√√√√ tr
[
K2
y|θ∗(s(y))

]
tr

[(∑C
i=1Ky|θ∗CL

(s(yAi | y−Ai))
)2]

4.4 Curvature adjustment

The adjustment presented in the previous Section only modify the magnitude of the approx-
imated posterior but do not affect its geometry. The weight w similarly affects each direction
of space parameters and does not take into account a possible modification of the correlation
between the variables induced by the use of a composite likelihood approximation. We ex-
pect this phenomenon to be particularly important when dealing with models where there is
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a potential on singletons such as the autologistic model. Indeed estimation of the abundance
parameter and interaction parameter, θ0 and θ1, respectively, do not suffer from the same
level of approximation relating to the independence assumption between blocks. Thus we
should move from the general form (4) with a scalar weight on blocks to one involving a
matrix of weights.

Following Ribatet et al. (2012) in the context of marginal composite likelihood, our
strategy is to write

f (y | θ) ≈ fCL (y | θ∗CL +W (θ − θ∗CL)) ,

for some constant d × d matrix W . Note the substitution keeps the same maximum but
deforms the geometry of the parameter space through the matrix W .

Assume that W is a lower triangular matrix in order to take into account the correlation
between the parameter components. The suggestion of Ribatet et al. (2012) is to choose W
in order to satisfy asymptotic properties of maximum composite likelihood estimators when
the sample size tends to infinity. Since we only have one observation, we do not focus on the
asymptotic covariance matrix results but rather on the covariance matrix at the estimated
MAP. Indeed, we follow the same approach introduced in Section 4.3,

H log p(θ∗ | y) = H log pCL(θ∗CL +W (θ∗ − θ∗CL) | y),

which is equivalent to

H log p(θ∗ | y) = W TH log pCL(θ∗ | y)W.

Note that the problem of uniqueness faced by Ribatet et al. (2012) due to a Cholesky
decomposition does not exist here since we have access to a close form of different Hessians
through Monte Carlo estimators. This leads to a system of equations that can be easily
solved.

5 Examples

In this numerical part of the paper, we focus on models defined on a 16× 16 lattice and we
use exhaustively all 4 × 4 blocks. For the lattice of this dimension the recursions proposed
by Friel and Rue (2007) can be used to compute exactly the normalizing constants z(θ,G ),
z(θ,G , yAi

) and to draw exactly from the distribution f (y | θ) or from the full-conditional
distributions of Ai f(yAi

| y−Ai
, θ). This exact computation of the posterior serves as a

ground truth against which to compare with the posterior estimates of θ using the various
composite likelihood estimators. Computation was carried out on a desktop PC with six
3.47Ghz processors and with 8Gb of memory. Computing the normalizing constant of each
block took 0.0004 second of CPU time. One iteration of the BFGS algortihm took 0.09
seconds to estimate the MAP of the composite likelihood and 1 second to estimate the MAP
of true likelihood. The weight calibration for one dataset took approximately three minutes.
Note that for more realistic situations involving larger lattices, one requires a sampler to
draw from the full likelihood such as the Swendsen-Wang algorithm (Swendsen and Wang,
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1987), however the computational cost of using this algorithm increases dramatically with
the size of the lattice. One possible alternative is the slice sampler of Mira et al. (2001) that
provides exact simulations of Ising models.

In each experiment, we simulated 100 realisations from the model. For each realisation,
we use the BFGS algorithm 1 with an adhoc stopping condition to get the estimators θ̂∗ and
θ̂∗CL. One iteration of the algorithm is based on a Monte Carlo estimator of either Ey|θs(y) or
EyAi

|θs(yAi
| y−Ai

, θ) calculated from 100 exact draws whereas the Monte Carlo estimators of
the covariance matrix Ky|θ̂∗(s(y)) and Ky|θ̂∗CL

(s(yAi
| y−Ai

)) are based on 50000 exact draws.

In all experiments we placed uniform priors on θ.
Comparing the posterior p (θ | y) with the various posterior approximations pCL(θ | y)

requires knowledge of the covariance matrix of θ. We could have used numerical integra-
tion but we prefered to use a simple MCMC algorithm. In terms of implementation, 7000
iterations were used with a burn in period of 2000 iterations for each dataset.

First experiment We considered the special case of a first-order Ising model with a
single interaction parameter θ = 0.4, which is close to the critical phase transition beyond
which all realised lattices takes either value +1 or -1. This parameter setting is the most chal-
lenging for the Ising model, since realised lattices exhibit strong spatial correlation around
this parameter value. Using a fine grid of {θk} values, the right hand side of:

p(θk | y) ∝ q(y | θk)
z(θk)

p(θk), k = 1, . . . , n,

can be evaluated exactly. Summing up the right hand side – using the trapezoidal rule –
yields an estimate of the evidence, p(y), which is the normalizing constant for the expression
above and which in turn can be used to give a very precise estimate of p(θ | y). The plot
so obtained for the posterior and posteriror approximations are given by Figure 1(a). On
this example it should be clear that using an un-calibrated conditional composite likelihood
leads to considerably underestimated posterior variances. But once we perform the mean
adjusment and the magnitude adjusment, this provides a very good approximation of the
true posterior. In Figure 1(b) we display the ratio KCL(θ)/K(θ), where K(θ), respectively
KCL(θ), denotes the variance of the posterior, respectively the posterior approximation, for
θ, based on 100 realisations of a first-order Ising model. In view of these results there is no
question that the magnitude adjustment (10) provides an efficient correction of the variance.

Table 2 confirms this result through evaluation of the relative mean square error, that is
E [(1−KCL(θ)/K(θ))2], and the average KL-divergence between the approximated posterior
and true posterior distributions based on 100 realisations of a first order.

Second experiment We were interested in an anisotropic configuration of a first-order
Ising model. We set θ = (0.3, 0.5). The evidence p(y) is here estimated with an importance
sampling method. We drew 1000 points using a Gaussian law whose moments are related
to the Monte Carlo estimators of moments of θ. Figure 2(a) and Figure 2(b) represent a
comparison between the true likelihood and the estimates. As for the isotropic case, the
mean and the magnitude adjustment allows us to build an accurate approximation of the
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Figure 1: First experiment results. (a) Posterior distribution and posterior distribution
approximations for θ of a first-order Ising model. (b) Boxplot displaying the ratio of the
variances KCL(θ)/K(θ) for 100 realisations of a first-order Ising model.

Table 2: Evaluation of the relative mean square error (RMSE) and the average KL-divergence
(AKLD) between the approximated posterior and true posteriror distributions based on 100
simulations of a first-order Ising model.

COMP. LIKELIHOOD RMSE AKLD

ppseudo (θ | y) 1.96 0.510
pCL(θ | y) (w = 1) 0.757 0.337
pCL(θ | y) (w defined by (10)) 0.040 0.010

posterior. In Figure 2(c) we display boxplots, based on 100 realisations of an anisotropic
first-order Ising model, of the ratio ‖KCL(θ)K−1(θ)‖F/

√
2, where ‖·‖F denotes the Frobenius

norm. The different weight options are almost equivalent in term of variance correction. The
weight w5 seems to be the most informative. It should not be a surprise since it is based on
the Frobenius norm which carries information of the matrix and its singular values.

This conclusion is emphasized in Table 3 which presents the relative mean square error
E [‖1−KCL(θ)K−1(θ)‖2F] and the average KL-divergence between the approximate and true
posterior distributions for 100 realisations of the model.

Third experiment Here we focused on an autologistic model with a first-order de-
pendance structure. The abundance parameter was set to θ0 = 0.05 and the interaction
parameter to θ1 = 0.4. The differents implementation settings are exactly the same as for
the second experiment. This example illustrates how the use of composite likelihood approx-
imation can induce a modification of the geometry of the distribution as shown in Figure
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Figure 2: Second experiment results.(a) Posterior distribution and posterior distribu-
tion approximation based on the conditional composite likelihood with w = 1. (b) Poste-
rior distribution and posterior distribution approximation based on the conditional compos-
ite likelihood with mean and magnitude adjustments (w = w(5)). (c) Boxplot displaying
‖KCL(θ)K−1(θ)‖F/

√
2 for 100 realisations of an anisotropic first-order Ising model.
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Table 3: Evaluation of the relative mean square error (RMSE) the average KL-divergence
(AKLD) between the approximated posterior and true posteriror distributions based on 100
simulations of an anisotropic first-order Ising model.

COMP. LIKELIHOOD RMSE AKLD

pCL(θ | y) (w = 1) 1.28 2.25
pCL(θ | y) (w = w(1)) 0.555 0.067
pCL(θ | y) (w = w(2)) 0.583 0.066
pCL(θ | y) (w = w(3)) 0.540 0.071
pCL(θ | y) (w = w(4)) 0.551 0.061
pCL(θ | y) (w = w(5)) 0.525 0.079

3(a). Indeed in addition to the mean and variance misspecification the conditional compos-
ite likelihood also changes the correlation between the variables. It should be evident that
a magnitude adjustent would not be fruitful here since it would not affect the correlation.
Instead the curvature adjustment manages to do so and thus yields a good approximation
of the posterior, see Figure 3(b). One can object that we do not detect tail of the posterior.
But Figure 3(c) and Table 4 show that the adjustment yields an efficient correction of the
variance.

Table 4: Evaluation of the relative mean square error (RMSE) and the average KL-divergence
(AKLD) between the approximated posterior and true posteriror distributions based on 100
simulations of a first-order autologistic model.

COMP. LIKELIHOOD RMSE AKLD

pCL(θ | y) (w = 1) 3.44 2.38
pCL (θ∗CL +W (θ − θ∗CL) | y) 0.96 1.89

6 Conclusion

This paper has illustrated the important role that conditional composite likelihood approx-
imations can play in the statistical analysis of Gibbs random fields, and in particular in the
Ising and autologistic models in spatial statistics, as a means to overcoming the intractability
of the likelihood function. However using composite likelihoods in a Bayesian setting can be
problematic, since the resulting approximate posterior distribution is typically too concen-
trated and therefore underestimates the posterior mean and variance. Our main contribution
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Figure 3: Third experiment results. (a) Posterior distribution and posterior distribution
approximation based on the conditional composite likelihood with w = 1. (b) Posterior dis-
tribution and posterior distribution approximation based on the conditional composite like-
lihood with mean and curvature adjustments. (c) Boxplot displaying ‖KCL(θ)K−1(θ)‖F/

√
2

for 100 realisations of a first-order autologistic model.

has been to show how to calibrate the approximate posterior distribution that results from
replacing the true likelihood with a conditional composite likelihood. Further work will focus
on how to extend this framework to Gibbs random fields with larger number of parameters,
such as the exponential random graph model.
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