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1 Introduction

Let M be a compact connected manifold. We assume that/ is even dimen-
sional and oriented. We consider a spifistructure on M, and denote by S
the corresponding Spirf bundle. Let K be a compact connected Lie group
acting on M and S and we denote byD : ! (M,S8%) — ! (M,S87) the corre-
sponding K-equivariant Spin® Dirac operator. The equivariant index of D,
denoted Qk (M, S), belongs to the Grothendieck group of representations of
K:
Q« (M,S) = ) m(m) .
leK

An important example is when M is a compact complex manifold, K
a compact group of holomorphic transformations of M, and £ any holo-
morphic K-equivariant line bundle on M, not necessarily ample. Then the
Dolbeaut operator twisted by £ can be realized as a Spih Dirac opera-
tor D acting on sections of a Spifrbundle S. In this case Qk (M,S) =
Yq(~1)IHOI(M, L).

Another example is when M is a compact even dimensional oriented
manifold with a K-invariant spin structure. Let Sspin be the corresponding
canonical spin bundle, L be any K-equivariant line bundle, and take the
Spin® bundle Sspin ® L. Then Qk (M, Sspin ® L) is the index of the Dirac
operator associated to the spin structure twisted by the line bundleL.



The aim of this article is to give a geometric description of the multiplic-
ity m (7) in the spirit of the Guillemin-Sternberg phenomenon [Q, R] = 0
[10, 17, 18, 28, 20]. After the remarkable results of Meinrenken-Sjamaar [18],
it was tempting to Pnd in what way we can extend these results to other
situations. Consider the determinant line bundle L = det(S) of the spin®
structure. This is a K-equivariant complex line bundle onA/. The choice of
a K-invariant hermitian metric and of a K-invariant hermitian connection
V on L determines a moment map

"M ¥

by the relation £(X) — Vx,, = 2i(" 5, X), for all X € ¢. If M is spin and
S = Sspin ® L, then " s is the Omoment mapO associated to a connection on
L.

We compute m() in term of the reduced OmanifoldsO (K ¢)/K. This
formula extends the result of [21]. However, in this article, we do not assume
any hypothesis on the line bundleL, in particular we do not assume that the
curvature of the connection V is a symplectic form. In this pre-symplectic
setting, a partial answer to this question has been obtained by [12, 8, 9, 5]
when K is a torus.

In a recent preprint [14], Hochs and Mathai use our result to obtain a
[Q, R] = 0 theorem in the case of an action of a connected Lie grou@ on a
Spin® manifold M. In their work, G or M are not necessarily compact but
the G-action on M is proper and co-compact : in this context they are able
to come back to the compact setting by AbelOs slice theorem.

Results obtained here have been announced in [23].

1.1 The result

We start to explain our result in the torus case. The general case reduces
(in spirit) to this case, using an appropriate slice for the K-action on M.
Let T be a torus acting e#ectively on M, and let S — M be aT-
equivariant Spin®-bundle (with connection) on M. In contrast to the sym-
plectic case, the image "s(M) might not be convex and depends of the
choice of the connection. Let $c t* be the lattice of weights. If u € $, we
denote by C, the corresponding one dimensional representation df’. The
topological spaceM, =" gl(u)/T, which may not be connected, is an orb-
ifold provided with a Spin®-structure when p in t* is a regular value of "s.
In this case we debne the integer €"(M),) as the index of the correspond-
ing Spin° Dirac operator on the orbifold A,,. We can debne QOi”(Mu) even

if 1 is a singular value. Postponing this dePnition, our result states that
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Figure 1: T-multiplicities for non ample bundle on Hirzebruch surface

Qr(M,8) = >, QP"(My)Cy

bel A" s(M)

Here is the debnition of Qp‘”(MH) (see Section 5.1). We approach: by
a regular value . + ¢, and we debne @ (M,) as the index of a Spiff Dirac
operator on the orbifold M, -, and this is independent of the choice ofe
su%ciently close. Remark here thatu has to be an interior point of " s(M)
in order for QSP"(M,,) to be non zero, as otherwise we can takg + ¢ not in
the image. In a forthcoming article, we will give a more detailed description
of the function ;. — QSP"(M,,) in terms of locally quasi-polynomial functions
on t*.

When M is a toric manifold, this result was obtained by Karshon-
Tolman. In Figure 1, we draw the picture of the function y — QSpi”(Mu)
for the Hirzebruch surface, and a non ample line bundle on it (we give the
details of this example in the last section). The image of "s is the union
of the two large triangles in red and blue. The multiplicities are 1 on the
integral points of the interior of the red triangle, and —1 on the integral
points of the interior of the blue triangle.

Now consider the case of a compact connected Lie groulg acting on M
and S. Before describing precisely the multiplicities of Qx (M, S), we brst



give a vanishing result.

Let H, be the set of conjugacy classes of the reductive algebrég, £ € £*.
We group the coadjoint orbits according to the conjugacy classh) € H, of
the stabilizer, and we consider the Dixmier sheetfz‘h) of orbits K¢ with ¢
conjugated to h. We denote by H the connected subgroup ofK with Lie
algebrab. If 3 is the center ofh, let 35 be the set of¢ € 3%, such that ¢4 = b.
We see then that the Dixmier sheetéz‘h) is equal to K35.

Let (v ) be the generic inpnitesimal stabilizer of theK-action on M.
We prove the following vanishing result in Sections 4.5.1 and 4.5.2.

Theorem 1.1 If Qk (M, S) is non zero, then there exists a unique (h) € He
such that :

o ([tm,tm]) = ([b,b]),
e the pullback " 51(‘8’(‘}))) is open and dense in M.

A typical example of a couple (M, S) satisfying the conditions of Theo-
rem 1.1 if whenM is equal to K xy Y with Y a compact H /[ H, H]-manifold
(see Subsection 5.4). The Spirrbundle on M determines a Spiti-bundle Sy
on Y such that the moment map " s, takes value in3* (3 is the Lie algebra
of H/[H, H]). In this case, it is easy to compute Ok (M,S) in terms of
Ou (Y, Sy ) via an induction formula.

In spirit, we are in this situation. Indeed we can debne the non-compact
OsliceQ) = " 5'(34) which is a H/[H, H] submanifold of M such that K'Y
is a dense open subset af/.

In order to study the K-multiplicities of Qg (M,S), we need a geometric
parametrization of the dual k.

We say that a coadjoint orbit P < £* is admissible if P carries a Spirf-
bundle Sp such that the corresponding moment map "s is the inclusion
P « £*. We denote simply by QR”" (P) the element Ok (P, Sp) € R(K). It
is either 0 or an irreducible representation of K, and the map

O — 7o = QPM(0)

debnes a bijection between the regular admissible orbits and the dudk’.
Denote by A((h)) the set of admissible orbits contained in the Dixmier
sheett,,. When O is a regular admissible orbit, a coadjoint orbit P € A((h))
is called a(h)-ancestor of O if Q”"(P) = 7o.
When (M, S) satisfy the conditions of Theorem 1.1, we can debne the
Spin® index Q%P (Mp) e Z of the reduced spaceMp =" S*(P)/K, for any
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P e A((h)). We use the slice) and the deformation procedure, as explained
in the abelian case.

We obtain the following [@, R] = 0 theorem which is the main result of
the paper.

Theorem 1.2 Assume that ([em ,tm ]) = ([b, b]) with (b) € He.
e The multiplicity of the representation mo in Qk (M,S) is equal to

>, QP (Mp)

P

where the sum runs over the (h)-ancestor of O. In other words

Q (M, S) Z QSp'” Q" (P).

PeA((

o Furthermore, each term QSP'n(Mp) € Z does not depend on the choice
of the connection on the determinant line bundle det(S).

It may be useful to rephrase this theorem by describing the parametriza-
tion of admissible orbits by parameters belonging to the closed Weyl chamber
tLy. Let $5o 1= $ n tf, be the set of dominant weights, and letp be the
half sum of the positive roots.

The set of regular admissible orbits is indexed by the set $¢ + p: if
A € $-0 + p, the coadjoint orbit K\ is regular admissible andngg is the
representation with highest weight A — p.

Denote by F the set of the relative interiors of the faces oft,. Thus

tLo = [ loer 0. The facet?, is the open face inF.

Let o € F. The stabilizer K4 of a point £ € o depends only ofo. We
denote it by Ko, and by &y its Lie algebra. We choose onty, the system
of positive roots compatible with t%,, and let X7 be the corresponding
p- When p € o, the coadjoint orbit Kp is admissible if and only if A =
p—p+pkees.

The map F — Hg, 0 — (), is surjective but not injective. We denote
by F((h)) the set of faces ofty, such that () = (b).

Using the above parameters, we may rephrase Theorem 1.2 as follows.

Theorem 1.3  Assume that ([tm,tm]) = ([b,b]) with (h) € He. Let X €
$-0+ p and let mg € Z be the multiplicity of the representation wxg in
Ok (M,S). We have

(1.1) mg= > QP"(My g exo)).

o€F ((h))
$—&Koec%



Figure 2: K-multiplicities and ancestors

More explicitly, the sum (1.1) is taken over the faceso of the Weyl
chamber such that

1.2)  ([em tm]) = (twtd), "s(M)no#@, Aefo+p )

In Section 6.3, we give an example of &U (3)-manifold M with generic
stabilizer SU(2), and a Spirf bundle S where severalo contribute to the
multiplicity of a representation wgg in Ok (M,S). On Figure 2, the picture
of the decomposition of Qx (M, S) is given in terms of the representations
QX" (P) associated to theSU (2)-ancestorsP. All reduced spaces are points,
but the multiplicity Q SP"(Mp) are equal to —1, following from the orien-
tation rule. On the picture, the links between admissible regular orbits O
and their ancestors P are indicated by segments. We see that the orbit
O(p) of p has two ancestorsP; and P», so that the multiplicity of the trivial
representation is equal to

Q" (Mp,) + Q" (Mp,) = —2
and comes from two di#erent faces of the Weyl chamber.

If the generic stabilizer of the action of K in M is abelian, expression
(1.1) simplipes as follows. Consider the slic&” = " 51( *0) Which is a T-
invariant submanifold. Let " y be the restriction of " s to Y. If Ok (M,S)

is non zero, thenKY is a dense open subset af/, and we have simply

(1.3) mg = Q%" (Ys)



where Yg =" (1(\)/T. In other words

O (M,S) = > QP"(Vg)mks.

$e! >0+&

In particular, if the group K is the circle group, and X is a regular value
of the moment map ", Identity (1.3) was obtained in [5].

1.2 Techniques of the proof

Consider the Kirwan vector beld ks on M: at m € M, ks is the tangent
vector obtained by the inpnitesimal action of —" s(m) at m € M (we have
identiped ¢ and £*). We use a topological deformations: of the symbol o
of the Dirac operator D by pushing the zero section of T M inside T*M
using the Kirwan vector beld ks. We call this deformation the Witten
deformation, as it was used by Witten (in the symplectic setting) to show
that the computation of integrals of equivariant cohomology classes on\/
reduces to the study of contributions coming from a neighborhood o¥ s, the
set of zeroes ofkgs, leading to the so called non abelian localization formula.

Here we apply the same technique to compute the indexQk (M, S) as
a sum of equivariant indices of transversally elliptic operators associated
to connected componentsZ of Zs. We are able to identify them to some
basic transversally elliptic symbols whose indices were computed by Atiyah-
Singer (see [1]). Although these indices are inbnite dimensional represen-
tations, they are easier to understand than the original Pnite dimensional
representation Qx (M, S) (an analogue, strongly related via the theory of
toric manifolds, is the Brianchon-Gram decomposition of the characteristic
function of a compact convex polytopeP as an alternate sum of character-
istic functions of cones). We give an example of the decomposition of the
representation Qg (M, S) in Subsection 4.2.

All properties of the K -theory version of Witten deformation that we
use here were previously proved in [20]. However, we have written in [24] a
hopefully more readable description of the functorial properties of this non
abelian localization formula in K -theory.

To compute the multiplicity of 7o in Ok (M,S), we use the shifting
trick and compute the K-invariant part of the equivariant index Qg (P, Sp)
where P is the product manifold M x O*. Let Zp be the zero set of the
corresponding Kirwan vector bPeldxp and o the deformed symbol. The
computation of the equivariant index is thus reduced to the study of the
deformed symbolo: in a neighborhood of Zp. We have to single out the
components Z such that the trivial representation of K occurs with non
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zero multiplicity. Here is where we discover that, for Ok (M, S) to be non
zero, it is necessary that the semi-simple part of the generic stabilizefy, of
the action of K on M is equal to the semi-simple part of a Levi subalgebra
h of ¢. It follows that such a component 7 is described rather simply as
an induced manifold K xy (Y x o(h)), with Y a H/[H, H] manifold, and
o(h) the [H, H]-orbit of the corresponding pl™H I element. Then we use the
fact that the quantization of the orbit of p is the trivial representation. In
fact, to determine the contributing components Z, we study a function dp :
Zp — R relating the representation of Ky, on T, M and the norm of " s(m).
Here K, is the stabilizer of m € M. It relies on the Omagical inequalityO
(Corollary 3.15) on distance of regular weights to faces of the Weyl chamber.
This step di#ers from the crucial step in the proof of [Q, R] = 0 theorem in
the symplectic case. Both theorems are somewhat both magical, but each
one on its own. It maybe useful for the reader to read brst [24], where we
recall the brst author proof of [Q, R] = 0 in the Hamiltonian case, where
the strategy is straightforward. This strategy is also explained in more
combinatorial terms in Szenes-Vergne [26].

1.3 Outline of the article

Let us explain the contents of the di#erent sections of the article, and their
main use in the pnal proof.

e In Section 2, we give the debnition of the index of a Spiftbundle.

e In Section 3, we describe the canonical Spfabundle on admissible
coadjoint orbits (see (3.12)). For a K-admissible coadjoint orbit P, we
determine the regular admissible orbit© such that if Q""" (P) is not zero,
then QR”" (P) = 7o (Proposition 3.8).

We prove the magical inequality (Corollary 3.15) on distance of the
shifted Weyl chamber pK + t{y to admissible p € t* (that is Ky is an
admissible orbit). This inequality on Weyl chambers will be used over and
over again in this article.

¢ In Section 4, we debne the Witten deformation and recall some of its
properties (proved in [20, 24]). It allows us to reduce the computation of
Qk (M, S) to indices gz of simpler transversally elliptic operators debned in
neighborhoods of connected components dfs = {ks = 0}.

We introduce a function ds : Zs — R. If ds takes strictly positive values
on some componentZ of Zs, then the K-invariant part of the (virtual)
representation gz is equal to 0 (Proposition 4.17). This is a very important
technical proposition.

If O is an admissible regular coadjoint orbit, the shifting trick leads us



to study the manifold M x O* with Spin®-bundle S ® Spx. We want to
select the componentZ of Zsgs, ., so that [¢z]¥ is not zero. Theorem
4.22 summarizes the geometric structure enjoyed by and S when there
exists such a component. Although this theorem is natural (as we tried to
explain it in the introduction), we are able to obtain it only using Witten
deformation on M x O* (for all regular admissible orbits ©) and a careful
study of the function dsgs, -

We show that the components Z for which [¢z]% # 0 are contained
in the subsets "3%(P) x O* of M x O* where P is a (h)-ancestor to O
(Proposition 4.24).

We then obtain that the multiplicity m o of 7o in Ok (M, S) is the sum
>.»m7 parametrized by the (h)-ancestors ofO. In Proposition 4.25, we
prove that each term m(; is independent of the choice of the connection.

e In Section 5, we prove that ny is equal to Q" (Mp). Here we explain
how to debne indices on singular reduced spaces. The main theorem is their
invariance under small deformation.

We then have done all the work needed to be able to prove the main
theorem.

We Pnally verify that (fortunately) the statement [Q, R] = 0 in the Spin°
case is compatible with Spirf induction.

e The last section is dedicated to some examples.
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Notations
Throughout the paper :
e K denotes a compact connected Lie group with Lie algebré.
e T is a maximal torus in K with Lie algebra t.

e $ c t* is the weight lattice of 7" : every . € $ dePnes a 1-dimensional
T-representation, denotedCy,, wheret = exp(X) acts by tH := /WX,

e We bx a K-invariant inner product (-,-) on¢. This allows us to identify
¢ and £* when needed.

We denote by (-, -) the natural duality between ¢ and ¢*.

10



e We denote by R(K) the representation ring of K : an elementE €

R(K) can be represented as bnite sum’ = >, o mym,, withmy, € Z.

The multiplicity of the trivial representation is denoted [E]X.

e We denote by R(K) the space ofZ-valued functions on . An element
E € R(K) can be represented as an inpnite sunk’ = Zueﬁ m(p) Ty,
with m (u) € Z.

e If H is a closed subgroup off, the induction map Indf : R(H) —
R(K) is the dual of the restriction morphism R(K) — R(H). In
particular [IndX (E)]X = [E]".

e When K acts on a setX, the stabilizer subgroup ofx € X is denoted
Ky :={ke K | k-x = z}. The Lie algebra of Ky is denoted .

e An element ¢ € £* is called regular if K is a maximal torus of K.

e When K acts on a manifold M, we denote Xy (m) := &|i—oe™™ -m
the vector beld generated by— X € ¢£. Sometimes we will also use the
notation Xy (m) = —X - m. The set of zeroes of the vector pPeld(y
is denoted M* .

e If V is a complex (ungraded) vector space, then the exterior space
AV =A"V® A V will be Z/2Z graded in even and odd elements.

o If By = B ® E; and E; = Ef @ E, are two Z/2Z graded vector
spaces (or vector bundles), the tensor produci; ® E» is Z/2Z-graded
with (F1®F,)" = Ef B ®E; ® B, and (E1QE;)” = By QE; @
Ef®F, . Similarly the spaces End E;) are Z/2Z graded. The action of
End(E1)®End(E>) on E1® E, obeys the usual sign rules: for example,
if feEnd(E2)~, v1€e E and vp € Ep, then f(v1 ® v2) = —v1 ® fua.

e If E is a vector space and\/ a manifold, we denote by[E] the trivial
vector bundle on M with Pber E.

2 Spin ¢ equivariant index

2.1 Spin ¢ modules

Let V be an oriented Euclidean space of even dimensian = 2¢. We denote
by CI(V) its Cli#ord algebra. If e1,...,en is an oriented orthonormal frame
of V, we debne the element

e:=(i)leg---en e CI(V)
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that depends only of the orientation. We havee? = 1 and ev = —ve for any
veV.

If £ is a CI(V)-module, the Cli#ord map is denotedcg : CI(V) —
End(E). We see then that the element of order twoeg := cg(¢) debnes
a Z/2Z-graduation on E by debning E* := ker(ldg F eg). Moreover the
mapsce (v) : E — E for v € V interchange the subspace&* and E~. This
graduation will be called the canonical graduation of the Cli#ord module E.

We follow the conventions of [3]. Recall the following fundamental fact.

Proposition 2.1 Let V be an even dimensional Euclidean space.

e There exists a complex Cl(V)-module S such that the Clifford mor-
phism cs : CI(V) — End(S) induces an isomorphism of complez alge-
bra Cl(V) ® C ~ End(S).

o The Clifford module S is unique up to tsomorphism. We call it the
spinor Cl(V')-module.

o Any complex Cl(V')-module E has the following decomposition
(24) E~S5S® homc|(v)(S, E)

where homg ) (S, E) is the vector space spanned by the CI(V')-complex
linear maps from S to E. If V s oriented and the Clifford modules S
and E carry their canonical grading, then (2.4) is an isomorphism of
graded Clifford CL(V')-modules.

Let V = V1 @ V2 be an orthogonal decomposition of even dimensional
Euclidean spaces. We choose an orientation(V1) on V3. There is a one-
to-one correspondence between the graded @f)-modules and the graded
Cl(V)-modules debned as follows. Lef; be the spinor module for C(17).
If W is a CI(V2)-module, the vector spaceE := S1® W is a Cl(V)-module
with the Cli#ord map debned by

Ce(v1 D) = Cs; (v1) ®ldw + €s; ® Cw (v2).

Herev; € Vi and eg, € End(S1) debnes the canonical graduation of;. Con-
versely, if E is a graded ClV)-module, the vector space W :=
homg(v,)(S1, E) formed by the complex linear mapsf : S; — E com-
muting with the action of Cl (V1) has a natural structure of CI(V>) graded
module and £ ~ S1 ® W.

If we Px an orientation o(V') on V/, it Pxes an orientation o(V2) on V> by
the relation o(V') = o(V1)o(V2). Then the Cli#ord modules E and W carries

12



their canonical Z/2Z graduation, and £ ~ S; ® W becomes an identity of
graded Cli#ord modules.

Example 2.2 Let H be an Euclidean vector space equipped with a complex
structure J € O(H): we denote by /\;j H the exterior product of the space
H considered as a complex vector space with complex structure J. Denote
by m(v) the exterior multiplication by v. The action ¢ of H on /\yj H given
by c(v) = m(v) — m(v)* satisfies c(v)? = —|jv|2ld. Thus, Ay H, equipped
with the action C, is a realization of the spinor module for H. Note that the
group U(J) of unitary transformations of H acts naturally on \; H. If one
choose the orientation on H induced by the complex structure, one sees that
the canonical grading is (\; H)* = Ny H.

Consider another complex structure J' € O(H) : the vector space /\;, H
is another spinor module for H. We denote by ej, the ratio between the

orientations defined by J and J'. One can check that
(2.5) NH=~e'C ®/\H,
J/ J

as a graded Cl(H)-module and also as a graded U(J") nU(J)-module. Here
Cy is the 1-dimensional representation of U(J') n U(J) associated to the

unique character x defined by the relation x(g)? = dety.(g) dety (g)~L, Vg e
UJ’) nU(J).

Example 2.3 When V = Q®Q with Q an Fuclidean space, we can identify
V with Qc by (z,y) — x@iy. Thus Sq := /\ Qc is a realization of the
spinor module for V. It carries a natural action of the orthogonal group
O(Q) acting diagonally. If Q carries a complex structure J € O(Q), we
can consider the spin modules \; Q and /\_; Q for Q. We have then the
isomorphism Sq ~ \; Q® A_; Q of graded CI(V)-modules (it is also an
isomorphism of U(J)-modules).

2.2 Spin ¢ structures

Consider now the case of an Euclidean vector bundl&’ — M of even rank.
Let ClI (V) — M be the associated Cli#ord algebra bundle. A complex vector
bundle £ — M is a CI(V)-module if there is a bundle algebra morphism
ce : Cl(V) — End(&).
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Debnition 2.4  LetS — M be a Cl(V)-module such that the map Cs induces
an isomorphism Cl(V) ®; C — End(S). Then we say that S is a Spin°-
bundle for V.

As in the linear case, an orientation on the vector bundley determines a
Z/2Z grading of the vector bundle S (called the canonical graduation) such
that for any v € Vy,, the linear map! cs(m,v) : Sm — Sm is odd.

Example 2.5 When H — M is a Hermitian vector bundle, the complex
vector bundle \ H is a Spin® bundle for H. If one choose the orientation

of the vector bundle H induced by the complex structure, one sees that the
canonical grading is (\H)* = N H.

We assume that the vector bundleV is oriented, and we consider two
Spin®-bundles S, S’ for V, both with their canonical grading. We have the
following identity of graded Spin®-bundles : S’ ~ S® Ls s» whereLs s is a
complex line bundle onM debned by the relation

(26) LS,S’ = homc|(v)(8,8’).

Debnition 2.6 Let ¥V — M be an FEuclidean vector bundle of even rank.
The determinant line bundle of a Spin®-bundle S on V is the line bundle
Ls — M defined by the relation

Ls := homg; (S, S)

where S is the Cl(V)-module with opposite complex structure. Sometimes
Ls is also denoted det(S).

Example 2.7 When H — M is a Hermitian vector bundle, the determinant
line bundle of the Spin°-bundle N\ H is det(H) .= A\ H.

If S and &’ are two Spin“-bundles for V), we see that
Ls' = Ls ® (Ls.s)®2.

Assume that V = V3 @ V-, is an orthogonal sum of Euclidean vector
bundles of even rank. We assume that’; is oriented, and let S; be a Spirf-
bundle for V; that we equip with its canonical grading. If £ is a Cli#ord
bundle for V, then we have the following isomorphism

(2.7) E~S5H10W

1The map cs (m, =) : Vim — End(S,,) will also be denoted by cs,, -
2The proof is identical to the linear case explained earlier.
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where W := homgy, (81, €) is a Cli#ord bundle for V,. If V is oriented, it
Pxes an orientationo(V2) on V; by the relation o(V) = o(V1)o(V2). Then the
Cli#ord modules £ and W carries their canonical Z/2Z grading, and (2.7)
becomes an identity of graded Cli#ord modules.

In the particular situation where S is a Spirf-bundle for V, then S ~
S1 ® S2 where S := homg, (Vl)(Sl,S) is a Spirf-bundle for V,. At the level
of determinant line bundles we obtainLs = Ls, ® Ls,.

Let us end this section by recalling the notion of Spin-structure and
Spin®-structure. Let V — M be an oriented Euclidean vector bundle of
rank n, and let Pso (V) be its orthogonal frame bundle : it is a principal
SO, bundle over M.

Let us consider the spinor group Spig which is the double cover of the
group SO,. The group Spin, is a subgroup of the group Spif} which covers
SO, with bber U(1).

A Spin structure on V is a Spin,-principal bundle Pspi, (V) over M
together with a Spin,- equivariant map Pspin (V) — Pso(V).

We assume now thatV is of even rankn = 2¢. Let S, be the irreducible
complex spin representation of Spip. Recall that S, = St @ S, inherits
a canonical Cli#ord action ¢ : R" — End(S,) which is Spin,-equivariant,
and which interchanges the graduation:c(v) : S& — Sf. The spinor bundle
attached to the Spin-structure Pspin (V) is

S = Pspin (V) xspin,, Sh-

A Spin®-bundle for V determines a Spift structure, that is a principal
bundle over M with structure group Spin§;. When ) admits a Spin-structure,
any Spin°-bundle for V is of the form S| = Sspin ® L Where Sspin is the spinor
bundle attached to the Spin-structure and L is a line bundle on M. Then
the determinant line bundle for S, is L&2.

2.3 Moment maps and Kirwan vector peld

In this section, we consider the case of a Riemannian manifold/ acted on
by a compact Lie group K. Let S — M be a Spirf-bundle on M. If the
K-action lifts to the Spin®-bundle S in such a way that the bundle map
Cs : CI(TM) — End(S) commutes with the K-action, we say that S dePnes
a K-equivariant Spin®-bundle on M. In this case, the K-action lifts also
to the determinant line bundle Ls. The choice of an invariant Hermitian
connection V on Ls determines an equivariant map "s : M — £* and a
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2-form &s on M by means of the Kostant relations
(2.8) L(X)—Vyx,, =2i"s,X) and V?=—-2i&s

for every X e . Here £(X) denotes the inpnitesimal action ofX e ¢ on the
sections ofLs. We will say that " s is the moment map for S (it depends
however of the choice of a connection).

Via the equivariant Bianchi formula, Relations (2.8) induce the relations

(2.9) WX )&s = —d(" 5,X) and d&s =0

for every X € ¢. It follows that " s is a moment map, as debned in [24].
In particular the function m — (" s(m), X) is locally constant on M* .

Remark 2.8 Letb et andm € MP, the set of zeroes of by . We consider the
linear actions L(b)ls,, and L(D)|Ls, on the fibers at m of the Spin‘-bundle
S and the line bundle Ls. Kostant relations imply L(b)|Ls, = 2i(" s(m),b).
The irreducibility of S implies that

L(b)]s, =i(" s(m),b)lds,,.
Furthermore the function m — (" s(m),b) is locally constant on MP.

Note that the closed 2-form &s, which is half of the curvature of Lg,
is not (in general) a symplectic form. Furthermore, if we take any (real
valued) invariant 1-form A on M, V +iA is another connection onLs. The
corresponding curvature and moment map will be modiped in & — %dA
and " s — % A Where "p @ M — ¢* is dePned by the relation{(" o, X) =
—L(XM )A

Let": M — ¢ be a K-equivariant map. We debne the K-invariant
vector beldx+ on M by
(2.10) ke (m) == =" (m)-m,

and we call it the Kirwan vector bPeld associated to ". The set where k-
vanishes is a K-invariant subset that we denote byZ- < M.

We identify £* to € by our choice of K-invariant scalar product and we will
have a particular interest in the equivariantmap " s : M — ¢* ~ ¢ associated
to the Spin®-bundle S. In this case we may denote theK-invariant vector
Peld x+ ; simply by s (even if it depends of the choice of a connection):

ks(m) == —" s(m)-m.

and we denoteZ- by Zs.
As " s is a moment map, we have the following basic description (see
[20, 24)).
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Lemma 2.9 If the manifold M is compact, the set " s(Zs) is a Pnite col-
lection of coadjoint orbits. For any coadjoint orbit O = K3, we have

Zs 0" $HO) = K(M 0" 5H(B)).

Here we have identified 5 € t* to an element in € still denoted by .
Furthermore, any B in the image " s(Zs) is such that |B|? is a critical
value of the map |" s|?.

Remark 2.10 Although the map " s as well as the set Zs vary when we
vary the connection, we see that the image " s(Zs) is contained in a finite
set of coadjoint orbits that does not depend of the connection (see [24]).

Figure 3 describes the set s(Zs) for the action of the diagonal torus of
K = SU(3) on the orbit Kp equipped with its canonical Spirf-bundle.

A0

\ y

Figure 3: The set " s(Zs)

2.4 Equivariant index

Assume in this section that the Riemannian K-manifold M is compact,
even dimensional, oriented, and equipped with & -equivariant Spin®-bundle
S — M. The orientation induces a decompositionS = S* @ S, and
the corresponding Spift Dirac operator is a Prst order elliptic operator
Ds: V' (M,S87) - ! (M,S87) [3, 7]. Its principal symbol is the bundle map
o(M,S) e! (T*M,hom(p*S*,p*S~)) debned by the relation

o(M,S)(m,v) =cs,, (¥) : S — Sny-

Herev e T*M — » € TM is the identibcation dePned by the Riemannian
structure.

If W — M is a complex K-vector bundle, we can debne similarly the
twisted Dirac operator DY : 1 (M, ST @W) — ! (M,S~®@W).
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Debnition 2.11  Let S — M be an equivariant Spin°-bundle. We denote :
e Ok (M,S) € R(K) the equivariant index of the operator Ds,
o Ok (M,S®W) € R(K) the equivariant index of the operator DY’ .

Let X(M)(X) be the equivariant R-genus class ofM: it is an equivari-
ant analytic function from a neighborhood of 0 € ¢ with value in the alge-
bra of di#erential forms on M. Berline-Vergne equivariant index formula
[3][Theorem 8.2] asserts that

@1 QL) = () [ SO Fan )
4 M

for X € ¢ small enough. Here we writeQy (M, S)(eX) for the trace of the
elementeX e K in the virtual representation Q (M, S) of K. It shows in
particular that Q ¢ (M,S) € R(K) is atopological invariant : it only depends
of the class of the equivariant form &s + (" s, X ), which representshalf of
the brst equivariant Chern class of the line bundleLs.

Example 2.12 We consider the simplest case of the theory. Let M =
PL(C) be the projective space of (complex) dimension one. We write an
element of M as |21, z2] in homogeneous coordinates. Consider the (ample)
line bundle £ — P, dual of the tautological bundle. Let S(n) be the Spin°-
bundle N\ TM ® LO". The virtual representation Qt (M, S(n)) is equal to
HO(PY,O(n)) — HY(PY,O(n)). Then for n =0,

Or (M, S(m) = 3 .
k=0

1

Here T = {t € C;|t| = 1} acts on [z1,22] via t - [z1,22] = [t 21, 22].

3 Coadjoint orbits and the magical inequality

In this section, we describe Spif-bundles on admissible coadjoint orbits of
K and the equivariant indices of the associated Dirac operators.

3.1 Conjugacy classes of centralizers

For any ¢ € ¢*, the stabilizer Ky is a connected subgroup ofK" with same
rank. We denote by ¢ its Lie algebra.

Let H, be the set of conjugacy classes of the reductive algebrég, £ € £*.
The set H; contains the conjugacy class formed by the Cartan sub-algebras.
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It contains also ¢ (stabilizer of 0). A coadjoint orbit O belongs to the Dixmier
sheetéfh), for (h) € He if (Ex) = (h) for (any) £ € O.

Remark 3.1 Ifh = &4, then b is the Levi subalgebra of the parabolic sub-
algebra determined by &. Parabolics are classified by subsets of simple roots.
However, different conjugacy classes of parabolics might give rise to the same
conjugacy class of Levi subalgebras (as seen immediately for type Ap ).

We denote by S; the set of conjugacy classes of the semi-simple parts
[h, b] of the elements(h) € He.

Lemma 3.2 The map (h) — ([b,b]) induces a bijection between He and Sg

Proof. Assume that [h,h] = [b’,b’] = s. Consider n the normalizer of s.
Then b and b’ are both contained inn. Let t,t be Cartan subalgebras of
h,b’. Then t and t' are conjugated inside the normalizer ofs. As h = s + ¢,
we see thath is conjugated to ’.

The connected Lie subgroup with Lie algebrah is denoted H, that is
if h = &4, then H = Ky. We write h = 3 @ [h,h] where 3 is the center
and [h, b] is the semi-simple part ofh. Thus bh* = 3* @ [h,h]* and 3* is
the set of elements inh* vanishing on the semi-simple part of. We write
t=0bd[3 ¢, so we embedy* in £* as a H-invariant subspace, that is we
consider an element € h* also as an element ot* vanishing on [3, £].

3.2 Statement of results on admissible coadjoint orbits

We brst debne thep-orbit. Let 7" be a Cartan subgroup of K. Then t* is
imbedded in ¢* as the subspace off-invariant elements. Choose a system
of positive roots ' * < t*, and let pX = >, ;. The debnition of pX
requires the choice of a Cartan subgrougdl” and of a positive root system.
However a di#erent choice leads to a conjugate element. Thus we can make
the following depnition.

Debnition 3.3  We denote by o(¥) the coadjoint orbit of pf € €. We call
o(t) the p-orbit.
If K is abelian, theno(t) is {0}.

The notion of admissible coadjoint orbit is dePned in [6] for any real
Lie group G. When K is a compact connected Lie group, we adopt the
following equivalent depbnition: a coadjoint orbit O c £* is admissible if O
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carries a K-equivariant Spin®-bundle Sy, such that the associated moment
map is the injection O « ¢*. If K¢ is an admissible orbit, we also say that
the element £ is admissible. An admissible coadjoint orbit O is oriented

by its symplectic structure, and we denote by G*"(0) := Ok (0, So) the

corresponding equivariant spirf index.

We have (¢, [t t4]) = 0. The quotient spaceq = ¢/t is equipped with
the symplectic form &x(X¥, ¥) := (£, [X,Y]), and with a unique Ky-invariant
complex structure Jy such that &x(—, J4—) is a scalar product. We denote
by g the spacet/¢; considered as a complex vector space via the
complex structure Jz. Any element X € ¢; debPnes a complex linear map
ad(X) : g% — q*.

Debnition 3.4 e For any & € £*, we denote by p(§) the element of € such
that 1
Xy ==

We extend p(§) to an element of €, that we still denote by p(§).

Tr qgad(X), X e .

Thus, given a ¢ € t*, and H = Kz we have written pK as sum of
ke 4+ p(€), according to the decompositiont = £; @ q.

If i0 . ¢z — iR is the di#erential of a character of K, we denote by
C, the corresponding 1-dimensional representation of<y, and by [C | =
K xk . C the corresponding line bundle over the coadjoint orbit K¢ — ¢*.
The condition that K¢ is admissible means that there exists a Spiibundle
S on K¢ such that det(S) = [Cax] (2i£ needs to be the di#erential of a
character of Ky).

Lemma 3.5 1. {p(&), [t ts]) = O.

2. The coadjoint orbit K& is admissible if and only if i(§ — p(§)) is the
differential of a 1-dimensional representation of Kg.

Proof. Consider the characterk — det, (k) of Ky. Its di#erential is

2ip(§). Thus (p(&), [t t4]) = 0.
We can equip K¢ ~ K /Ky with the Spin®-bundle

S#:szKE/\q#

with determinant line bundle det(Sy) = [Cags]. Any other K-equivariant
Spin®-bundle on K¢ is of the form S ® [C ] where if is the di#erential of
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a character of K. Then det(Sg® [C,]) = [Ca«] if and only if £ — p(§) = 6.
The lemma then follows.

In particular the orbit o(t) is admissible. Indeed if¢ = pK, then ¢ —

p(§) = 0.

An admissible coadjoint orbit © = K¢ is then equipped with the Spirf-
bundle

+

(3.12) S5 = K x, (/\ q#®C#_&(#)> .
Its Spin® equivariant index is

(3.13) QP"(0) = Indk, (A" ®Chapn) -

See [24].

The following proposition is well known. We will recall its proof in
Lemma 3.11 in the next subsection.

Proposition 3.6 e The map O — mp = ipin (O) defines a bijection

A~

between the set of regular admissible orbits and K.

° Qstin (o(t)) is the trivial representation of K.

We now describe the representation Qoi”((’)) attached to any admissible
orbit in terms of regular admissible orbits.

Debnition 3.7  To any coadjoint orbit O < €, we associate the coadjoint
orbit s(O) < € which is defined as follows : if O = Kpu, take s(O) = K¢
with £ € p+ o(ty). We call s(O) the shift of the orbit O.

If O is regular, s(O) = O. If O = {0}, then s(O) = o(¥).

The following proposition will be proved in the next subsection.
Proposition 3.8  Let P be an admissible orbit.

o P*:= —P is also admissible and Qstin (P*) = Qstin (P)*.

o If s(P) is regular, then s(P) is also admissible.

e Conversely, if O is reqular and admissible, and P is such that s(P) =
O, then P is admissible.
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e D Ifs(P) is not regular, then Qstin (P) = 0.
D If s(P) is regular, then Qsti” (P) = f(pi”(s(p)) = Ts(p).

It is important to understand what are the admissible orbits P such that
s(P) is equal to a bxed regular admissible orbitO.

For the remaining part of this subsection, we Px a conjugacy clasgh).
We denote by A((h)) the set of admissible orbits belonging to the Dixmier
sheetéfh).

Debpnition 3.9 Let O < ¢* be a K-orbit. A K-orbit P is called a (h)
ancestor of O is P < &y and s(P) = O.

We make the choice of a connected Lie subgroup/ with Lie algebra b
and write h = 3@ [h,h]. We denote by 3§ the set of elements§ € 3* such
that Ky = H. The orbit o(h) (the p-orbit for H) is contained in [h, h]*. The
orbit P is a (h)-ancestor to O, if and only if there exists u € 3§ such that
Ku =P and p" € o(h) such that O = K(u + p™). If O is admissible then
P is admissible (see Lemma 3.16).

Given a regular admissible orbit O, there might be several(h)-ancestors
to O.

Example 3.10 Consider the group K = SU(3) and let () be the centralizer
class of a subregular element f € €* with centralizer H = S(U(2) x U(1)).

We consider the Cartan subalgebra of diagonal matrices and choose a
Weyl chamber. Let wy,w2 be the two fundamental weights. Let 01,02 be the
half lines Row1, Rsow2. The set A((h)) is equal to the collection of orbits
K- (22w),n e Z (see Figure 4).

Figure 4. H-admissible orbits

22



As —w1 1is conjugated to wo, we see that the set A((h)) is equal to the
collection of orbits K - (1+22n wi),n € Zso,i = 1,2. Here we have chosen the
representatives in the chosen closed Weyl chamber.

One has s(K - (1+22n wi)) = K(pX + (n—21)wi). Thus the shifted orbit is a
reqular orbit if and only if n > 0. For n = 1, both admissible orbits K - %wl
and K - (%Swl) =K- %wz are (h)-ancestors to the orbit KpK = o(¥).

Both admissible orbits P, = K - %wl and P, = K - %wz are such that
Q" (P) =0

In Figure 5, we draw the link between H-admissible orbits and their
respective shifts.

Figure 5: H-admissible orbits and their shifts

There might also be several classes of conjugagy) such that © admits
a (h)-ancestor P. For example, let O = o(t). Then, for any h € H, the
orbit K(pX — pM) is a (h)-ancestor to ©. Here we have chosen a Cartan
subgroup T' contained in H, H = K3 and a positive root system such that
¢ is dominant to debPnepk and p".

3.3 Admissible coadjoint orbits and Weyl chamber

In order to parameterize coadjoint orbits, we choose a Cartan subgroug”
of K with Lie algebra t. Let $ < t* be the lattice of weights of T. Let W
be the Weyl group. Choose a system of positive roots ** < t*, and let

R

+>0
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If « € t* is a root, we denote by H. € t the corresponding coroot (so
{a, Hi) = 2). Then {p¥ H.) =1 if and only if a is a simple root.
Debne the positive closed Weyl chamber by

Lo={{et" (& Hy)=0forall o > 0},

and we denote by $.o := $ Nt the set of dominant weights. Any coadjoint
orbit O of K is of the form O = K¢ with {{} = O n X,

We index the set K of classes of Pnite dimensional irreducible repre-
sentations of K by the set pX + $-o. The irreducible representation g
corresponding to A € pX + $-¢ is the irreducible representation with in-
Pnitesimal character A. Its highest weight is A — pX. The representation
mgi 1S the trivial representation of K. The Weyl character formula for the
representation g is, for X € t,

T « ZWEW 6(w)€i<W$'X>
r mg(e”) = [Tog e X2 — e iHX02"

For any u € t*, we consider its elementp(u) € € (Debnition 3.4).

Lemma 3.11 Let X € t{y be a regqular admissible element of €*. Then
1. de pX +$-0.

2. QPM(KN) = .

Proof. Let A € t%, be regular and admissible, themp()) = pK, soX e {pX +
$} Nty If ais a simple root, thenthe integer (A—pf | Hy) = (u, Hy)—1
is non negative, as(\, H.+) > 0. So\ — pX is a dominant weight.
Atiyah-Bott Pxed point for the trace of the representation Q""" (K \) is
Weyl character formula.
Thus we obtain Lemma 3.11 and Proposition 3.6.

If h e He, we denote by||p" || the norm of any element in the coadjoint
orbit o(h) < h* for H.

The positive Weyl chamber is the simplicial cone determined by the
equations (\, Hy ) > 0 for the simple roots« > 0. We denote by F; the set
of the relative interiors of the faces ofty,. Thus t£; = [[oe o, and we
denote by t, € F; the interior of t%,.

Let o € F. Thus Ro, the linear span of g, is the subspace determined
by (A, H+) = 0 where the« varies over a subset of the simple roots.
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The stabilizer K4 does not depend of the choice of the poinf € o : we
denote it by Ky The map o — &y induces a surjective map fromF; to He.

For o € F¢, we have the decompositionty, = [to, £oe] @ 3(€e) with dual
decomposition &, = [£o, £ @ Ro. Let

pKazzé > a

a>0
(+,%)=0
be the p-element of the group Ko, associated to the positive root system
{a > 0, (e,0) = 0} for Ky, Then

pK—pK”=% >«

a>0

(+,%)>0

and for any u € o, the element p(u) € £* is equal to pX — pX<. In particular,
oK — pKe vanishes on[ty, ), sopK — pK7 € Ro, while pK o e [ty £y*. The
decompositionpX = (pX — pX7) 4 pK< is an orthogonal decomposition.

Figure 6 shows this orthogonal decomposition op for the caseSU(3).

Figure 6: Orthogonal decomposition ofpk

We start by proving some geometric properties of the Weyl chamber. The
subsetpk +t, of the positive Weyl chamber will be called the shifted Weyl
chamber. It is determined by the inequalities (A, H+) > 1 for any simple
root « > 0, and thus (A, H;) > 1 for any positive root. The following
proposition is illustrated in Figure 7 in the case SU(

3).
Proposition 3.12 1. If X e pf + 8, then (A, X) = (A, p) = (b, pf).
The equality (A, \) = (X, pK) holds only if X = pK.
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Figure 7: Distance of a singular element, to a strongly regular element A

2. Leto e .Fg.
e The orthogonal projection of € t£y onto Ro belongs to o.

o We have pX — pKv e o for any o € Fe.
3. For any (h) € He, [p | = |7, and || = [p" | only if H = K

4. If e pf +t5, and p € t*, then:

1
(3.14) A =ul?=z 5 > (a) =]
a>0

(+,u)=0

The equality
IA = ul? =

> (e

a>0

(+)=0

holds if and only if u belongs to t5y, and if p is the projection of A on
the face o of t£q containing p. In particular X — p(A) = p — p(p).

NI =

Proof. If A = pf + ¢, with ¢ € t%,, inequalities (A, \) > (X, pf) >
(K, pK) follows from the fact that (A, c) and (o, c) are non negative, as
the scalar product of two elements oft% is non negative.

The second point follows from the fact that the dual cone tot%, is
generated by the simple rootsw;, and (i, a5) <O, if i # j.
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We have the orthogonal decompositionpk = pKe + (pX — pK<): hence
pK — pK<, which is the orthogonal projection of oK € t*, on Ro, belongs to
ag.

For the third point, we might choose H conjugated to Ko, S0 |pK [? =
[ ]2+ 0% — P2

We now prove the last point.

Let €, be the centralizer of u and let 3 be the center of¢,. Consider the
orthogonal decompositiont* = 3* @ a* where a is a Cartan subalgebra for
by, 8], that is a = X, ,,)_oRH+. Let pX» € a* be the p element for the
system ' 1 = {a >0, (a,u) = 0} of [&,, &,].

Let us write A = pX + ¢, with ¢ dominant, and decomposepX = pg + p1,
¢ = cg+ c1, With po, co € 3%, p1,c1 € a*. Thus X\ = Ag + A1, with ) € 3* and
A1 = p1+c1. Now p; belongs to the shifted Weyl chamber ina*. Indeed, for
any a > 0 such that (o, 1) = 0, we have(py, H:) = (pX | H:) > 1. Similarly
c1 is dominant for the system ' 1.

As u € 3*, we have |\ — p|? = |Xo — u|? + |p1 + c1]?. Using the prst
point of 3.12, we obtain

IA = pl? = Ao = pl? + Ipr + caf® = (p1 + c1,057) = |42

As .
(p1 + c1, p0) =

N

> (e
a>0
(+,1)=0

we obtain Inequalities (3.14).

If the inequality [A — u[? > (p1 + c1, pf*) is an equality, then ¢; = 0,
p1 = pfu, and Ao = p. Thus for roots a e ' 1, (pKu Hyy = (pf Hy). As
pK» takes value 1 on simple roots fork,, it follows that the set S; of simple
roots for the system ' ; is contained in the set of simple roots for ' *. As
a = @+es,RH+, the orthogonal 3 of a is Ro for the face o of t* orthogonal
to the subset 51 of simple roots. We then haveK,, = Ko Furthermore,
A = p+ pfe. Thus p is the projection of A on Ro, sop € o < t5;. As
p(\) = pX, and p(u) = pX — pXo, we obtain A — p(\) = u — p(u). So all
assertions are proved.

Corollary 3.13  Let o € F¢. The distance between the shifted Weyl chamber
K +t£g and the vector space Ro is equal to |pKe|. Purthermore, if p + X,
with X' € t5y and X € Ro are at distance |p¥ 7|, then pX + XN = pKe + A

Proof. Indeed, if © € Ro, and A € pK + to, then Inequality (3.14)
implies that |A — uf = [p%#]. As Knc Ky, 0= = ||
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Let us reformulate Inequalities (3.14) above independently of the choice
of a positive root system.

Debnition 3.14 A regular element \ € €* determines a closed positive Weyl
chamber Cg  €§. We say that X is very regular if X € p(A) + Cs.

Regular admissible elements are very regular.
Here is the magical inequality that we will use over and over again to
get vanishing results.

Corollary 3.15 (The magical inequality) Let A\, u be two elements of
t*. Assume that \ is very regular, then
1
A=l =5 3 (o) =
(a,\)>0
(+1)=0

If the equality

holds, then p e Cg and X — p(\) = u— p(u).

Let us now study the admissible coadjoint orbits and their shifts. The
following lemma just restate properties which follow directly from the pre-
ceding discussions.

Lemma 3.16 For any p € o,
o p(p) =p = pf and P — v e,
o o(t,) = KoK,
o Ky is admissible if and only if u + pKo e pX + 8,
o s(Kp)=K(u+p<).

Proposition 3.17 below says that the shifts ofadmissible elements stay
in the closure of the Weyl chamber. Figure 8 illustrate this fact in the case
SU(3).

Proposition 3.17  Let o be a relative interior of a face of t5q and let p be
an admissible element  of t.
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Figure 8: Shifts of admissible orbits

1. If p is reqular and p — pX €@, then p— pKe e o.
2. If pe o and p+ pX is regular, then p+ pXeo e pX + ($0 N 7).

3. If pe o, we have

spin 0 if 4+ pX< is singular,
Kk (Kp)= . K. -
T4 8Ko if u+ p™c is regular.

Proof. The brst point follows from the fact that pX — pK< e 0.

We prove the second point. Lety € o such that A = p + pK< is regular.
Thus ||A — u||?2 = [p%#|?. Then X being regular and admissible,\ is very
regular. We use Corollary 3.15. The equality|A — u||?2 = ||pK#|? implies
A=p\) = p—p(p) = p—(pf —pK). Thus p(X) = pf, so X € t&,. The
element A — pX =y — (oK — pK)isin Ro. As it is dominant, it is in 7.

Let us prove the last point. Let q* be the complex space /¢, equipped
with the complex structure Jy,. The equivariant index ( of the Dirac oper-
ator associated to the Spiff-bundle Sk = K xk, (A " ® C,_gxc1er0) IS
given by Atiyah-Bott bxed point formula: for X et, ( (eX) = ZweW/WM w -

i, X - . .
Moo eifaf;>/z>,e_i<a,x>/z- Here W}, the stabilizer of 1 in W, is equal to the

Wey! group of the group Ko, Using Yoy, €(w)e"& = | R O
e~*/2), we obtain

Swew €(w)el WHTE)X)

X
(3.15) ((e™) [Tag @ X2 — o iGXO2°
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If 1+ pX<= is singular, ( is equal to zero. If 1 + pX< is regular, thanks
to the second point, u + pKe is in P +$-0, s0 ( = T+ &Ko -

Remark that pK - itself is not dominant, so it is not true that any element
w+ pfe, with 4 € o, is dominant. Thus the integrality conditions on p are
needed to obtain Proposition 3.17.

Let us prove Proposition 3.8.

We choose a Cartan subgroupl’ and a positive root system, and let
P = Kpu be an admissible orbit, with 1 € t£,. Let o be the face (interior)
of t£, where ;1 belongs. By Lemma 3.16,s(P) = K(u + pX<). Thus the
two prst points of Proposition 3.8 as well as the last point are consequence
of Proposition 3.17. From the Atiyah-Bott bxed point formula, we obtain

T (QE"(P*)(9) = Tr (QF"(P) (g™, s0 G (P*) = Q" (P)*.

3.4 Complex structures

We often will use complex structures and normalized traces on real vector
spaces debned by the following procedure.

DePnition 3.18 Let N be a real vector space and b : N — N a linear
transformation, such that —b? is diagonalizable with non negative eigenval-
ues. Define

e the diagonalizable transformation |b| of N by |b| = v/—b2,

o the complex structure J, = blb|™1 on N/ker(b)

o we denote by nTr N |b| = 3T N |b], that is half of the trace of the action
of |b] in the real vector space N. We call nNTr y |b| the normalized trace of b.

If N has a Hermitian structure invariant by b, 3Tr  |b] is the trace of |b|
considered as a Hermitian matrix. The interest of our notation is that we
do not need complex structures to debPneTr y |b|.

If N is an Euclidean space and a skew-symmetric transformation of N,
then —b? is diagonalizable with non negative eigenvalues. By debnition ofy,
the transformation b of N determines a complex diagonalizable transforma-
tion of N/ker(b), and the list of its complex eigenvalues igia1, . . ., ia(] where
the ax are strictly positive real numbers. We havenTr y |b] = Z(k:1 ax = 0.

Recall our identibcation ¢ = £¢* with the help of a scalar product. When
£ € t*, denote by b the corresponding element oft. We have debned a
complex structure J« on ¢/¢. On the other hand, b debnes an invertible
transformation of ¢/¢+. It can be checked that J« = J, If we choose a
Cartan subalgebra containingb, then nTr ¢|b| = >, _ [, b)|.
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For further use, we include a lemma. Let us considetc, the complexibed
space oft. Consider the complex space/\ tc.

Lemma 3.19 Let b e t. Let x € R be an eigenvalue for the action ofip mn
Ntc. Then x = —nTr ¢|b|

Proof. Indeed, consider a Cartan subalgebra containing b, the system
of roots ' and an order such that {(«,b) > 0 for all « > 0. An eigenvalue
x on /\ tc is thus of the form >}, ¢ (o, b). Thus we see that the lowest
eigenvalue is— >, _(a,b) = —nTr ¢b|.

Assume now that ' — M is a real vector bundle equipped with an
action of a compact Lie group K. For any b € ¢, and any m € M such that
bm (m) = 0, we may consider the linear actionZ(b)|,:,, which is induced by
b on the Pbers\y,. Itis easy to check that (£(b)|u;, )? is diagonalizable with
eigenvalues which are negative or equal to zero. We denote By (b)| =

—(LO)n)’

Debnition 3.20  We denote by NTr u;,, |b| = 3Tr |Lm (b)| that is half of the
trace of the real endomorphism |Lm(b)| on Nm. We call nTr pr, |b| the nor-
malized trace of the action of b on N, .

For further use, we rewrite Corollary 3.15 as an inequality on normalized
traces.

For any b € ¢ and p € ¢* bxed by b, we may consider the action
ad(b) : £, — €, and the corresponding normalized tracenTr ¢, |ad(b)| de-
noted simply by nTr ¢, [b].

Proposition 3.21  Let b € ¢ and denote by B the corresponding element in
€. Let A\, p be elements of € fizxed by b. Assume that X\ is very regular and
that u — A = 3. Then

1
612 = S0 ¢ o]
If the equality holds, then u belongs to the positive Weyl chamber Cg and
1. A=p(N\) = p—p(p), hence X is admissible if and only if p is admissible,
2. s(Kpu) =K.

Proof. Indeed, as)\ is Pxed byb, we see thats belong to t5. We may
assume thattg = t*. Thus 8, A and u = A— 3 belong to t*. The element\ is
a very regular element oft*. Proposition is thus a restatement of Corollary
3.15.

31



3.5 Induced Spin ¢ bundles

Let H c K be the stabilizer subgroup of some element ift*. We denote by
h the Lie algebra of H and we consider the open subseij := {{ € h* | Ky <
H}. Equivalently, the element &, identiPed to an element off, is such that
the transformation ad(&) is invertible on ¢/h, so it determines a complex
structure on t/h denoted Ju. The complex structure Jy on £/h determined
by ¢ € hg depends only of the connected component’ of h§ containing &.
Thus we denote by Jc the corresponding complex structure onq = ¢/, by
pc € 3* the element pK (¢) — pM (€) for any ¢ € C and by ¢ the complex
vector spaceq equipped with Jc. If C and C’ are two connected components,
we denote by&’ the ratio of the orientation o(Jc) and o(Jc:) on q.

Consider a compact H-manifold Y and the manifold M = K xy Y.
Assume M is oriented and equipped with a K-equivariant Spin°-bundle S.
At the level of tangent spaces we have /|y ~ [q]®TY where[q] =Y xq.
We orient the manifold Y through the relation o(M) = o(Jc)o(Y). We
consider the Spirf-bundle Sy debned by

(3.16) Sk = [\ a¢|@sv.

Here [Aq¢] =Y x Aq° is a Spirf-bundle for the trivial bundle [q].

This gives a bijection (depending ofC) between the K-equivariant Spin°®-
bundles S on M and the H-equivariant Spin®-bundles Sy on Y. If the
relation (3.16) holds, we say thatS is the Spin°-bundle induced by Sy. In
this Oinduced settingO, we have

(3.17) O (M,8) = Indf§ (A @ (V,S)).
See [24].
We end this section by considering the particular case of an induced

manifold M := K xy Hp where Hy is an admissibleH -coadjoint orbit. Here
H i is equipped with its canonical Spirf-bundle Sy, , and the representation

Ow (Hp, Sy ) is simply denoted by GP" (H ).
The Spin® index on the manifold M = K xy Hpu is equal to the character

1§ = ind§ (/\a® @ Q" ().
The following result will be used in Section 5.4.

Proposition 3.22 e If i+ pc ¢ b§, then I$ = 0.
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o If w+ pc € bh§, then u+ pc is K-admissible, and

I§ = €€ QP (K (1 + pc))

where C' is the connected component of b§ containing u + pc.

Proof. By depnition Q" (Hy) = Indﬂu</\% h/hu ® Cu,&H(u)). We

assume brst thaty' := p + pc € b§ : let C’ be the connected component of
bg containing p + pc. As Ky = Hy = Hy, we have

Iﬁ: = |ndE#/(/\qC @/\ b/bp’ ®CU'—&C—&H(W))'

!

Now we use the fact that the gradedk,,,-module A q€ is equal toeS, A q©'®
Cec-a, (see Example 2.2). It gives that

£ = &mdf (Ade J/\h/bu@cu,_&c/_&ff(m)
H/
& Indf | (/\ €/t ® Cy_aq))

_ C Qspln ( )

Assume now that I # 0. The equivariant index Q" (Hy) must be
non zero. Hence we have 8" (Hpu) = Q" (Hf) where e p + o(by) is an
H-admissible and H-regular element.

Consider the maximal torus 7" := Hy, and the Weyl chamberC = t%, for
K containing #. Let Je be the corresponding complex structure ort/t. Let
oK be the p element associated to the choice of Weyl chamber. Lef’ be
the connected component ofy§ that contains the open facet?,. We check
that p* = pcr + p ().

Like before one has

S — s (A€ 50F" 1)
= Ind-}F(/\qC@/\b/t(@Cﬁ_&H(ﬁ))
Ip

= 68/ Ind-PF (/\E/t@ CF}+&C*&K>'
Je

We see then thatlff #0onlyif Ai= g+ pc =i/ + p" is a K-regular
element.
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Here we have|p" | = |\ — /||, and one the other hand by the magical
inequality we must have | A — /| > |« | since\ is K-regular and admissi-
ble. It forces | p* | to be equal to |p™+'|, and then K, = H : the element
' = p+ pc belongs tohg.

The proof is completed.

Remark 3.23  This proposition is a particular case of the vanishing theorem
that we will prove later on in Section 4.5.1. Indeed the generic stabilizer of
the action of K on M ~ K/H, is H,, and the moment map associated to
the induced bundle is k — k- /. Our vanishing Theorem 4.19 says then that
for Qx (M, S) to be non zero, the subalgebras by and &y have to be equal.

3.6 Slices

We assume here thatM is a K-manifold and that " : M — ¢ is a K-
equivariant map. If O is a coadjoint orbit, a neighborhood of "~1(0) in
M can be identibed with an induced manifold, and the restriction of Spifi-
bundles to a neighborhood of "~1(©) can be identibed to an induced bundle.
To this aim, let us recall the notion of slice [16].

Debpnition 3.24 Let M be a K-manifold and m € M with stabilizer sub-
group Ky. A submanifold Y < M containing m is a slice at m if Y is
Km-invariant, KY is a neighborhood of m, and the map

K XK om, Y — Ma [kay] — ky
18 an isomorphism on KY .

Consider the coadjoint action of K on £*. DebneUy to be the connected
component of the open subsett})o := {¢ € & | £. &} of £} containing &.
Then K xk, Uy — KUy is a di#eomorphism. We callUy the maximal slice
at &.

The following construction was used as a fundamental tool in the sym-
plectic setting [11].

Proposition 3.25 Let": M — ¢* be a K-invariant map. Let £ € £*, and
let Uy be the maximal slice at &.

o Y =" "YUy is a Ky-invariant submanifold of M (perhaps empty).

e KY is an open neighborhood of " ~1(K¢) diffeomorphic to K XK Y.
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The manifold Y, when is not empty, is called the slice (ofM) at & € £*.
Note that Y can be disconnected.

Proof. Let us consider the Ky-invariant decompositions ¢ = &4 @ q,
t* = ¢ ®q*: we denote{ — [£]q+ the corresponding projection to q*.

A point ¢ isin (), if and only if the map Y € g — Y'( is an isomorphism
from qto g*. Thusforany y e Y, thelinearmap) y := [—]goTy": T yM —
g* is onto. Indeed, the tangent space toKy projects onto the tangent
space toK" (y), which contains [q," (y)] = q*. Thus we obtain that Y is a
submanifold with tangent space kex) y) and furthermore TyM = Ty Y @®q-y.

The rest of the assertions follow from the fact that Uy is a slice at¢ for
the coadjoint action.

4 Computing the multiplicities

4.1 Transversally elliptic operators

In this subsection, we recall the basic debnitions from the theory of transver-
sally elliptic symbols (or operators) debned by Atiyah and Singer in [1]. We
refer to [4, 22] for more details.

Let M be a compact K-manifold with cotangent bundle T*M. Let
p: T*M — M be the projection. If £ is a vector bundle on M, we may
denote still by £ the vector bundle p*€ on the cotangent bundle T*M. If
ET, £~ are K-equivariant complex vector bundles overM, a K-equivariant
morphism o € ! (T*M,hom(€*,£7)) is called asymbol on M. For z € M,
and v € TiM, thus o(z,v) : & — & is a linear map from & to & .
The subset of all (z,v) € T*M where the map o(x,v) is not invertible is
called the characteristic set of o, and is denoted by Chafs). A symbol
is elliptic if its characteristic set is compact. An elliptic symbol o on M
debnes an elemenfo]| in the equivariant K -theory of T*M with compact
support, which is denoted byK& (T*M). The index of ¢ is a virtual Pnite
dimensional representation of K, that we denote by Index¥ (o) € R(K).

Recall the notion of transversally elliptic symbol. Let T ¢ M be the fol-
lowing K-invariant closed subset of T*M

Tk M ={(z,v)eT*M, (v, X -zy=0 forall X e¢t}.

Its Pber over a pointx € M is formed by all the cotangent vectorsy € T{ M
which vanish on the tangent space to the orbit ofz under K, in the point
xz. A symbol o is K-transversally elliptic if the restriction of o to Tg M
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is invertible outside a compact subset of T, M (i.e. Char(c) n Tg M is
compact).
A K-transversally elliptic symbol o debnes an element oK & (T M),
and the index of ¢ dePnes an element Indd{ (o) of R(K) debned in [1].
We will use the following obvious remark. Leto € ! (T*M,hom(E+,£7))
be a transversally elliptic symbol on M.

Lemma 4.1 Assume an element b € K acts trivially on M, and that E*
are K -equivariant vector bundles on M such that the subbundles [EX]P fized
by b are equal to {0}. Then [Index (0)]X =0

Proof. The space[Index! (¢)]¥ is constructed as the (virtual) subspace of
invariant C*-sections of the bundle€* which are solutions of aK -invariant

pseudo-di#erential operator onM with symbol o. But, as the action of b is
trivial on the basis, and [£]° = {0}, the space ofb-invariant C*-sections
of the bundle £* is reduced to 0.

Any elliptic symbol is K-transversally elliptic, hence we have a restriction
map K@ (T*M) — K (T M), and a commutative diagram

(4.18) KO (T*M) 'O (TE M)

M M
Index; | Index;;

R(K) —R(K) .

Using the excision property, one can easily show that the index map
Indexy : KO (T:U) — R(K) is still debPned wheni/ is a K-invariant rela-
tively compact open subset of akK'-manifold (see [20][section 3.1]).

In the rest of this article, M will be a Riemannian manifold, and we
denoterv € T*M — # e T M the corresponding identibcation.

4.2 The Witten deformation

In this section M is an oriented K-manifold of even dimension (not neces-
sarily compact). Let": M — £* be a K-equivariant map. Let s+ be the
Kirwan vector field associated to " (see (2.10)). We denote byZ- the set
of zeroes ofx+ (clearly Z+ contains the set of Pxed points of the action of
K on M as well as "~%(0)).

Debnition 4.2  Let o(M,S)(m,v) = cs,,(#) : Sii — Sy, be the symbol of
the Dirac operator attached to the Spin®-bundle S, and let " : M — €* be
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an equivariant map. The symbol o(M,S," ) pushed by the vector field k- is
the symbol defined by

o(M,S," )(m,v) =cs,, (#—k (m)): S — S,y

for any (m,v) e TM.
Similarly if W — M is a K-equivariant vector bundle, we define

o(M,SROW," Y(m,v) =o(M,S," )(m,v)®Idyy, .

Note that o (M, S," )(m,v) is invertible except if # = x+ (m). If further-
more (m, ) belongs to the subset T, M of cotangent vectors orthogonal to
the K-orbits, then v = 0 and s+ (m) = 0. Indeedx~ (m) is tangent to K -m
while # is orthogonal. So we note that(m,v) € Char(c(M,S," s)) n Tg M
if and only if v =0 and s+ (m) = 0.

For any K-invariant open subsetl/ — M such that U/ n Z+ is compact in
M, we see that the restrictiono (M, S," )|, is a transversally elliptic symbol
on i, and so its equivariant index is a well debned element if(K).

Thus we can debne the following localized equivariant indices.

DebPnition 4.3 o A closed invariant subset Z < Z+ is called a compo-
nent if it is a union of connected components of Z- .

o [fZ < Z+ is a compact component and W is a K-equivariant vector
bundle over M, we denote by

k (M,S®W,Z,") e R(K)

the equivariant index of o(M,S @ W," ) where U is an invariant
neighborhood of Z so thatU n Z+ = Z.

o If we make the Witten deformation with the map " =" g, the term
Ok (M, S®W, Z," s) is denoted simply by Qx (M,SQ@W, Z).

By dePnition, Z = ¥ is a component andQk (M,S®W, &," ) = 0.

When MM is compact it is clear that the classes of the symbols (M, S," )
and o(M,S) are equal in K2 (T# M), thus we get the brst form of the
localization theorem.

Theorem 4.4 Assume that M is compact. If Z» = Z1]]...[[Zp is a
decomposition into disjoint (compact) components, we have the following
equality in R(K) :

p
QK (M,S) = Z QK (M7872i7" )
i=1
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Remark 4.5 Write " s(Zs) = ]_L- O as a disjoint union of a finite set of
coadjoint orbits. Then we obtain the decomposition

(M, S) ZQO

with Qo = 9k (M,S," gl((’)) N Zs). As in [20], this decomposition is the
main tool of our study. However, in this work, we will need to introduce a
further refinement of this decomposition.

Example 4.6 We return to our basic example (Exzample 2.12). Let py =
[1,0] and p_ = [0, 1] be the fived points of the T-action on M = P1(C). The
determinant line bundle of S(n) is Ln = [C_1] ® L®?"*2 where [C_4] is the
trivial line bundle equipped with the representation t—1 on C. We choose the
moment map "  associated to a connection on the determinant bundle (see
more details in Section 6):

|21)2 1
|212 + |222 2

Then, forn >0, Z = {ps} U {p_} u" 710), thus " n(Zs) = {—3} v {0} U
{n+ 2}. Remark that Zs is smooth: it has 3 connected components, the two
fized points, and " 71(0) a circle with free action of T. Then we obtain the
associated decomposition Q1 (M,S(n)) = Qf% + Qo + Q% with

IR LR W

Example 4.7 Take the product N = PY(C) x P(C), with Spin® bundle
S = §(0) ® §(0), moment map " o and we consider the diagonal action of
T with moment map " (my,mp) =" o(m1) +" o(m2). As Q1 (PY(C),S(0))
is the trivial representation of T, Q1 (N, S) is still the trivial representation
of T.

We have " (Zs) = {—1} U {0} U {1}. In this case " ~1(+1) = {(p+,p+)},
and " ~1(0) is not smooth.

Consider the associated decomposition of Q1 (N,S) = Q_1 + Qo + Q1.
We have

"n(lz1,22]) = (n + 1)

-2 —0

Q1= ) (k=1 Qo= D, (k| -1 Z

k=—o0 k=—o0

We see that indeed Q_1 + Qo + Q1 = t°. Figure 9 shows the corresponding
multiplicity functions.
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Liﬁ

Figure 9: The graph of @_1 + @1 and the graph of Qo

4.3 Some properties of the localized index

In this subsection, we recall the properties of the localized index
Qk (M,S,Z," ) that we will use in this article.

4.3.1 Fixed point submanifolds and Spin®-bundles

Let S be a K-equivariant Spin®-bundle over the tangent bundle TM of a K-
manifold M (equipped with an invariant Riemannian metric). The manifold
M is oriented and the Cli#ord bundle S is equipped with its canonicalZ/2Z-
grading. Let b € ¢ be a non-zeroK-invariant element, and consider the
submanifold M where the vector beldby vanishes. We have an orthogonal
decomposition
TM|yo =N@OTMP.

The normal bundle A inherits a Pbrewise linear endomorphism£(b)

which is anti-symmetric relatively to the metric.

DePnition 4.8 e We denote by Np the vector bundle N over M® equipped
with the complex structure Jy = L(b)|L(b)|~L.

o We take on N the orientation o(N) induced by the complex structure
—Jo. On MP we take the orientation o( MP) defined by o(N)o(MP) = o(M).

Note that the endomorphism L(b) : My, — Ny is C-linear, diagonalizable,
with eigenvaluesi6?,, ... ,2'9?( that depends of the connected componentt
of MP. For further use, we note the following positivity result which follows
directly from the depnition of Jj,.

Lemma 4.9 The eigenvalues of the action of %L’(b) on Ny are positive.

If we consider the complex line bundle det\) — MP, we see that? £(b)
acts on the bbers of def\y)|y by multiplication by the positive number

P
T pq iy B = D
j=1
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Proposition 4.10  Let Ls be the determinant line bundle of the Spin® bun-
dle S. There exists a equivariant SpIN°-bundle dp(S) on the tangent bundle
T MP with determinant line bundle equal to

(419) Ldb(S) = L3|M b & det(Nb).

Proof. The restriction S|y » is @ Spirf-bundle over the tangent bundle
TM|yb» = N@®TMP. We denote \Vj, the vector bundle A with the complex
structure —J,. Let A Ap be the Spirf bundle on A with its canonical
grading : sinceo(N) = o(—Jp) we have (A Np)* = AT M.

Since A\ MV} is a graded Spiri-bundle over N, we know that there exists
an equivariant Spin® bundle dy(S) over the tangent bundle TAZP (with its
canonical grading) such that

(4.20) Slwo = A\ No®do(S).

is an isomorphism of graded Cli#ord modules. At the level of determinant
line bundle, we get detS) |y » = det(Np)®det(dy(S)). Identity (4.19) follows.

Consider the linear action £(b)|q,(s) of b on the Pbers of the Spifi-bundle
dp(S) — MP.

Lemma 4.11 We have %E(b)|db(5) = aldg,(s) where
1
a(m) = <" 5(m),b> + énTr T M |b|

is a locally constant function on MP.

Proof. Thanks to Remark 2.8, we know thata(m) is equal to(" g, (s)(m), b)
where " ¢4, (s) is @ moment map attached to the line bundleLy, s). Thanks to
(4.19) we see that(" g,(s)(m),b) = (" s(m),b) + 2Tr p; |b]. But NTr 1w |b] =
Tr ; |b| @s well as and(" s(m),b) are locally constant on M®.

The localization formula of Atiyah-Segal can be expressed in the follow-
ing way (see [24]):

Theorem 4.12 Let b € £ be a non-zero K-invariant element and assume
that M 1is compact. For any complexr K-vector bundle W — M, we have the
following equalities in R(K) :

Ok (M,S®@W) = Ok (Mb, db(S) @ Wy o ® Sym(/vb)) .

Here Sym(Ny) is the symmetric algebra of the complex vector bundle Np.
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4.3.2 The localization formula over a coadjoint orbit

Let": M — £* be an equivariant map. Let3 € £*. We also considers as an
element oft that we denote by the same symbol. In this section we assume
that Z» = K(M" ~n" ~1(3)) is a compact component ofZ- < M. The study
of Qx (M, S®@ W, Z«,") e R(K) is thus localized in a neighborhood of
" ~1(K ), an induced manifold. Let us recall the corresponding induction
formula.

The restriction of "to M~ is a K+ -equivariant map taking value in £*.

The subsetZ, = M" ~" ~1() is a compact component ofZ- s = 2 M.
We may then debne the localized index

QKﬁ(M*7d* (8)®W|M 572’1‘7" |M»3) € R(K*)

where d- (S) is the graded Spirf-bundle on M" debned in Proposition 4.10.

We consider the normal bundleN' — M" of M" in M. Recall that N+
denotes the vector bundleA equipped with the complex Jx. The following
formula is proved in [20, 24]:

QK (M78®W7Z*7" )
~ Indf, (QKﬁ(M*7d* (S) @ W]y s ® Sym(A& ), ZL," |M5)®/\(E/E*)C) .
Remark 4.13 When K is abelian, this gives

QK (M7S®W7" _1(5) M M*vn )
= Ok (M*vd* (S)®W|M5 ®Sym(M)>'l _1(5) N M*7" |M 5)

which shows that the Atiyah-Segal localization formula (4.12) still holds for
the Witten deformation.

Thus we obtain the following proposition.

Proposition 4.14  Let S be a K -equivariant Spin®-bundle over M, with its
canonical grading. Let": M — €* be an equivariant map. Let W — M be
an equivariant complex vector bundle. Assume that Zs = K(M™ ~n" ~1(B))
is a compact component of Z+ < M. Then

[QK (MvS@WaZ* - )]K =
(4.21) [ Qu, (M d (8) @ Wl » ®SYmA:), 28" ) @ A\ (/e )c]
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This proposition will be used to obtain vanishing results, by studying
the inbnitesimal action of 3 on the vector bundle d« (S) @ W|y s ® Sym(N+ ).

The formula (4.21) can be specialized to each connected component of
M". For a connected componentt — M intersecting " ~1(3), we debne
the compact subset

Z(X)=K (X n"4B)) c 2.

First we note that Qx (M,S®W, Z«," ) is equal to the sum}_,, Ok (M,S®
W, Z= (X)," ) parameterized by the connected component of/” intersecting
" ~1(B) (their are bnite in number).

We have a localization formula for each termQx (M,S @ W, Z» (X)," )
separately (see [20, 24]) :

(4.22) [k (M,S®@W, Z+ (X)," )] =
[QKB<X7d*(8)|X®W’X®Sym( Na, Z4 (X ®/\ (e/ex) ] s

where Z, (X) = X n" ~Y(B3) < ZI.

4.3.3 Induction formula

For the Witten deformation, we proved in [24] the following variation on the
invariance of the index under direct images.

Let H be a closed subgroup of{, and consider aH -invariant decompo-
sition

t=0hdDq.

Let B, be an open ball inq, centered at 0 and H-invariant. Let N’ be a
H-manifold, and considerN = K xy (Bq x N'). Then N’ is a submanifold
of M, and the normal bundle of N’ in N is isomorphic to the trivial bundle
with Pber q@q. Let S, be the Spirf module for q&® q (we can take /\ qc as
realization of S;). Thus if £ is a K-equivariant graded Cli#ord bundle on
N, there exists a H-equivariant graded Cli#ord bundle £ on N’ such that

Elne = Sy &€&

Let"’: N’ — b* be a H-equivariant map, and let " : N — £* be a
K-equivariant map. We assume that these maps are linked by the following
relations :

z
|

(4.23) ([1 ']) €h* < X =0,
,n']), X) =0,
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for (X,n’) e By x N'.
Under these conditions, we see that the critical set&Z- < N and Z./
N’ are related by : Z+ = K xy ({0} x Z /).

Proposition 4.15 ([24]) Let Z be a compact component of Z- and Z' its
intersection with N'. Then Z' is a compact component of Z+ and

Q (N.€,2," ) = Indff (Qu (N',€',2,")).

This leads to the relation [Qk (N, &, Z," )X = [on (N, &, 2'," 7.

4.4 The function dg

Let M be acompact oriented even dimensionalK -manifold, equipped with
a K-equivariant Spin® bundle S. Let " s be the associated moment map on
M, and ks be the Kirwan vector beld. Let Zs be the vanishing set ofxs :

Zgz{meM|"3(m)-m:0}:UM’ n"$HO).

We now introduce a function ds : Zs — R which will localize our study of
[Ok (M, S, Zs)]¥ to special componentsZ of Zs.

Debneds : Zs — R by the following relation

1 .
(4.24)  ds(m)=|0)*+ SOTE 1w (0] = nTr el with 0 =" s(m).
Lemma 4.16 e The function ds is a K-invariant locally constant func-
tion on Zgs that takes a finite number of values.

o The subsets Z3° = {ds > 0}, Z5° = {ds = 0}, Z5° = {ds < O} are
components of Zs.

Proof. The K-invariance of ds is immediate.

The image " s(Zs) is equal to a Pnite union|J; O; of coadjoint orbits.
For each coadjoint orbit O = K3, the set Zs n " 3*(O) is equal to a Pnite
disjoint union | J; KX A" gl(ﬁ)) where (X1) are the connected components
of M" intersecting " 5*(3). Sincem — nTr 1, m |0| is well dePned and locally
constant on M-, the map ds is constant on each componenf (X1 ~" gl(ﬁ)).
This proves that ds is locally constant function that takes a Pnite number
of values.

The second point is a direct consequence of the prst.

We now prove the following fundamental fact.
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Proposition 4.17  Let Z§O be the component of Zs where ds takes strictly
positive values. We have [Qk (M, S, Zgo)]K =0.

Since Ok (M, S) = Ok (M, S, Z5°) + Ok (M,S,Z5°%) + Ok (M, S, Z3°)
by Theorem 4.4, note prst the following immediate corollary.

Corollary 4.18 If ds takes mon negative values on Zg, we have

[Qx (M, )] = [Qk (M, S, Z5°)]¢ .

We now prove Proposition 4.17.

Proof. Consider a coadjoint orbit K3 contained in " s(Zs). Let X
be the connected component of\/" and let Z,(X) := X n" ~1(B). Let
Zs(X) = KZ.(X). Let us show that [Qx (M,S, Z= (X))]K = 0 if ds is
strictly positive on Zx (X).

As [Qk (M, S, Z« (X))]¢ is equal to

@25) [ Qx, (, 0 ()] ® SymN: ), 2 (X)." sl) ® A(t/e )|

by the localization formula (4.22), it is su%cient to prove that the inPnitesi-
mal action £(3) on the bbers of the vector bundlesl: (S)|x ® Sym (N )|+ ®
/\(¢/& )c have only strictly positive eigenvalues. We establish this by mi-
norizing the possible eigenvalues : they are sums of eigenvalues on each
factor of the tensor product.

We have
18]1% + %nTr ™ Iy 18] on d- (3)!'20
gﬁ(ﬁ) =4=0 on Sym (N+)|x,
> —nTr ¢|f] on A(t/t)c.

In the brst equality, we have used Lemma 4.11: the functionm +—
" s(m), 5) is constant on X, and as X’ contains a point projecting on g,
FLB) gy = (BI2+ 30T a8 1da, (s

In the second inequality, we used Lemma 4.9, so that the action o%/:(ﬁ)
on the graded piece Syrh(/\ﬂr) is strictly positive for j > 0 or equal to O for
j=0.

In the last inequality, we have used Lemma 3.19.

If ds takes a strictly positive value on Zx (), we see that%ﬁ(ﬁ) >0on
d« (8)|x ® Sym (N+)|x ® A (E/8 )c : this forces (4.25) to be equal to zero.
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4.5 The Witten deformation on the product MO OF

In this section, M is a compact oriented even dimensional K-manifold,
equipped with a K-equivariant Spin® bundle S. Let " s be the associated
moment map on M. Our aim is to compute geometrically the multiplicities
of the equivariant index Qx (M, S).

4.5.1 Vanishing theorems

Let H, be the set of conjugacy classes of the reductive algebrdg, £ € £*.
We denote by S; the set of conjugacy classes of the semi-simple par{$, b]
of the elements(h) € H,.

Recall that an orbit P is a (h)-ancestor ofO if P belongs to the Dixmier
sheeté?h) and s(P) = O. Here s(P) is debned as follows : ifP = Ku with
¢, = b, then s(P) = K(u + o(h)) (see Debnition 3.7).

Recall that the map O — mp = Q¥P"(0) is a bijection between the

regular admissible orbits and K. If O is a regular admissible orbit, then
O* := =0 is also admissible andrpx = (7mp)*. If we apply the shifting
trick, we see that the multiplicity of 7o in Qk (M, S) is equal to

mo = [Qk (M,8)® (r0)*]
(4.26) = [Qk (M x 0,8 ® Sp+)] .

Let (¢u ) be the generic inPnitesimal stabilizer of theK'-action on M. In
this section, we prove the following vanishing results.

Theorem 4.19 o If ([tm,tm]) # ([b,b]) for any (h) € He, then
Ok (M,S8) =0
for any K -equivariant Spin®-bundle S on M.
o Assume that ([t ,tu ]) = ([b,b]) for () € He. Then
mp =0
if there is no (h)-ancestor P to O contained in" s(M).

We consider the product M x O* equipped with the Spin®-bundle SRS
The corresponding moment map is "sgs, « (m,§) = " s(m) + . We use
the simpliPed notation " o for " sgs, ., ko for the corresponding Kirwan
vector Peld on M x O*, Zo := {ko = 0}, and do for the function dsgs, .
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on Z»n. Theorem 4.19 will result from a careful analysis of the function
do : Zo — R that was introduced in Section 4.4. Thanks to Proposition 4.17
and Corollary 4.18, Theorem 4.19 is a direct consequence of the following
theorem.

Theorem 4.20 Let O be a regular admissible orbit.
e The function do is non negative on Zo.

e If the function dp is not strictly positive, then there exists a unique
() € He such that the following conditions are satisfied:

1. ([em, em]) = ([b,b])-
2. the orbit O has an (h)-ancestor P contained in " s(M).

Proof. Let P = M x O* and let us compute the function dpo on Zp.
Let m € M and A € O. The point p = (m,—\) € Zp < P if and only
"o(p)-p=0. Let B =" p(p). This means that 3 stabilizes m and )\, and
if p="s(m)et* then g =p— A\

We write T i _g)P = TmM @ T _sO* and, sinceO* is a regular orbit,
we havenTr 1 o«|8| = nTr ¢|A].

We consider a Ky, -invariant decomposition ThwM = ¢ - m @ Ey where
t-m ~ t/tm, we obtainnTr v m |B| = nTr g,,|8]+nTr ¢|3|—nTr ¢, |5]. Thus,

do(p) = |87 + 30T, e l8l —nTr o8

— 81+ 50T £ 18] — 50Tr o8

= 812+ 30Tt e, 18]~ 30Tr ¢, 18]

(4.27) > 812+ 50Tt e,,18] — 30T 4,131,

In the last inequality, we used ¢ < €, aspu =" s(m). By Proposition
3.21, ||3]? — %nTr t.|8] = 0 when 3 = p— A, as \ is very regular (being
regular and admissible), andj € £, n £g. Then the Prst point follows.

Assume now that there exists a pointp = (m,—\) € Zp such that
do(p) = 0. It implies then that 3] = nTr ¢ |8l and nTr g, [3] = 0. The
prst equality implies, thanks to Proposition 3.21, that Ky is an admissible
orbit such that s(K ;) = O. Letus denote H = K|, : the relation s(Ku) = O
implies that —3 € o(h) < [h,h]*. We write —3 = p". Now we have to
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explain why the condition nTr g, |p"| = O implies ([tw,tm]) = ([b,5]).
Since "s(m) = u, we have

(4.28) (twm ) = (Em) < (b).

Considery =" gl(UH) the H-invariant slice constructed in Proposition 3.25.
The product KY is an invariant neighborhood of m isomorphic to K xy Y.
The subspaceFEn, can be taken as the subspace Y < Ty M. Now the
condition nTr g, |p"| = 0 implies that p™ acts trivially on the connected
component Yy, of Y containing m. Elements X € [h, h] such that Xy, =0
form an ideal in [, h]. Since the ideal generated by in [h,h] is equal to

[h, b], we have proved that[h, h] acts trivially on Y. Since K'Yy, is an open
subset of M, we get

(4.29) ([0, 5]) = (bm ).

With (4.28) and (4.29) we get ([¢m ,tv ]) = ([b,b]). Finally we have proven
that if dp vanishes at some pointp, then ([¢m,tu]) = ([b,b]) for some
(h) € He, and there exists an admissible orbit/ ;. iy N s(M) such that
s(Kp) = 0.

4.5.2 Geometric properties

We summarize here some of the geometric properties enjoyed by, " =
" s), when Qk (M, S) is not zero.

Let (h) € He. We choose a representativéy. Let H be the corresponding
group and Nk (H) be the normalizer of H in K. Consider the decomposition
h = [b,h] @3 where; is the center ofh. Thus 3* < h*. Consider the open
set

ho = {£€b” | s b}

of h*. Let 35 = b5 n 3™ be the corresponding open subset off.
We Prst note the following basic proposition.

Proposition 4.21  Let M be a K-manifold such that ([tm ,tm]) = ([b,b])

and let" . M — ¥* be an equivariant map. Then
e " (M) c Kj*.
o Assume Y =" "1(h}) non empty, then

a) Y is a submanifold of M invariant by the action of Nk (H), and
[H, H] acts trivially on Y.
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b) The image " () is contained in 3§.
c¢) The open subset K is diffeomorphic to K Xy (1) V-

Proof. Let us prove the brst item. Using our K-invariant inner product,
we consider "as amap " : M — £ The condition on the inPnitesimal
stabilizer (ty ) gives that M = KMPHI If m e MIHH] the term " (m)
belongs to the Lie algebrag of the centralizer subgroupG := Zx ([H, H]).
But one can easily prove thatj is a Cartan subalgebra ofg: hence "(m) is
conjugated to an element of;. This proves the brst item.

If Y is non empty, the proof that it is a submanifold follows the same
line than the proof of Proposition 3.25. The setK) is a hon empty open
setin M : so on) we have (¢ ) = (ty) on a dense open subse)’. The
condition ([tm,&m ]) = ([b,b]) implies that dim[h,h] = dim[¢y,£,] on ),
but since ¢y < £ (yy = b, we conclude that [h,h] = [¢y, & ] < & on )’ ©in
other words [H, H] acts trivially on Y, and [h,b] = [¢, €] for any y € V.
Furthermore, if £ =" (y), then [h, h] acts trivially on £. So¢ is in the center
of b.

Let us prove that 7 : K xy (1) Y — KY is one to one. Ify; = ky,, we
have {1 = k& with & =" (yi). As " (Y) < 3§, the stabilizers of £1,&> are
both equal to H. It follows that % belongs to the normalizer of H.

The following theorem results directly from Theorem 4.20 and Lemma
4.21. Indeed, in the case wher®y (M,S) # {0}, then ([tm,tm ]) = ([h, b])
for some (h) € H,. Furthermore, there exists at least a regular admissible
orbit O such that me is non zero, and consequently there exists orbiP
Ez"h) Nn" s(M).

Theorem 4.22  Let M be a K-manifold and let S be an equivariant Spin°-
bundle on M with moment map " s. Assume Qg (M,S) # {0}. Then

e There exists (h) € He such that ([¢m,tm]) = ([h,H])-

e [f3 is the center of b, then " s(M) < K3* and the open set" gl(Kgg)
18 non empty.
n —1 *

o The group [H,H] acts trivially on the submanifold Y =" 5 (35).

In the next sections, we consider a connected componerdt' of h§. We
consider the H-invariant submanifold )¢ =" gl(C) of Y: here the open
subset K )¢ is di#eomorphic to K xy Jc.
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We follow here the notations of Section 3.5. We denote© the vector
spacet/h equipped with the complex structure Jc. There exists a unique
H-equivariant Spin®-bundle Sy, on )¢ such that

(4.30) Slye = \ 4° ® Sy...

At the level of determinant line bundles we have detSy,.) = det(S)|y, ®

C_2., and the corresponding moment map satisfy the relation *,, =

! 3|yc — pPC-
We know already that the subgroup [H, H] acts trivially on the subman-

ifold Vc (see Theorem 4.22). It acts also trivially on the bundleSy,. since
the moment map "y, takes value in3* (see Remark 2.8).
453 Localization on  Z3°

Let O be a regular admissible orbit. By Theorem 4.20 and Corollary 4.18,
we know that our object of study

mo = [Qk (M x 0%, 8 ® So)]"

is equal to [Qk (M x O*,S ® Sox, Z5°," @)]K.

Let us give a description of the subsetZg0 of Zo ¢ M x O* where
do vanishes. We denote byq : M x O* — £* @ ¢* the map given by
q(m, &) = (" s(m),—=¢). If ubelongs to a coadjoint orbitP, and £ € p+o(ty),
then P is an ancestor to the orbit O of &.

Debnition 4.23  Let P be a coadjoint orbit.
e Define the following subset of €* @ £*:

R(P) = {(1,§);ne P& € p+olty)}.
e Define Z5 = ¢ 1(R(P)) = M x O*.
Proposition 4.24  Assume M is a K-manifold with ([tm ,tm]) = ([b,5]).

Let S be a K -equivariant Spin°-bundle over M with moment map " s. Let
O be a regular admissible coadjoint. Then

z5° =125
P

where the disjoint union is over the set of (h)-ancestors to O. Furthermore,
for P a (h)-ancestor to O, the set Z} is equal to (" 5*(P) x O*) n Z5°.
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Proof. Inthe proof of Proposition 4.20, we have seen that, itip(m, —\) =
0, then the elementy, =" s(m) is such that (¢,) = (h) and A = 3 + p with
B € o(ty). SoKpis a(h) ancestor ofO and g(m, —\) € | |, Z5. This proves
the brst assertion.

Conversely take now (m,—¢) € 2} , debPneu =" s(m). So Kpu is a
(h) ancestor of O and £ = 1 + 3 with 3 € o(¢,). By K-invariance, we may
assumey € 35, some Y. We haveTyn M = ¢/t @ TmY. So

1 1
do(m, =€) = |B|* = ST ¢, + SnTr 7, |8].

As B € o(h) < [h,b] acts trivially on Y by Lemma 4.21, we have
do(m,—€) = [p"]? — inTr, |pH|. But since [h,h] = &n < b, and then
INTr g, |p™ | = 3nTr g|p™ | = [p7 |2 : Pnally do(m, —€) = 0.

At this stage we have proved that

(4.31) mo = Y mj
)

where the sum runs over the(h)-ancestor of O and
mg = [QK (M X O*,S®S@*,Zg," O)]K .

In the next section we will go into the computation of the terms m@. We
end up this section with the following important fact.

Proposition 4.25  Fach individual term mg is independent of the choice
of the moment map " s.

Proof. Let" §,t e [0,1] be a family of moment maps forS. This gives a
family " & (m, &) :=" % (m) + £ for S ® So=.

Let xl, be the Kirwan vector beld associated to '), and let Zp(t) :=
{rxl, = 0}. We denote simply by o' the symbol o(M x O*,§ ® Sp=," |,).
For any ¢ € [0,1], we consider the quantity Q5(t) € R(K) which is the
equivariant index of ot|y,, where Ut is a (small) neighborhood of

Z5(t) < Zo(t)

such that Ui n Zo(t) = Z5(t).

Let us prove that the multiplicity m 7(¢) = [Q5(t)]¥ is independent of
t. It is su%cient to prove that ¢t — [Q7(¢)]€ is locally constant : let us
show that it is constant in a neighborhood of 0. We follow the same line of
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proof that the proof of the independence of the connection of the local piece
Ok (M,S," S1(O) n Zs) of Ok (M, S) in [24].
Let Up be a neighborhood ofZ}(0) such that

(4.32) Uo N Zp(0) = 25(0).

The vector peld £ does not vanish ondl : there exist ¢ > 0 so that x!,
does not vanish ondly for ¢t € [0,¢]. The family ot|y,, t € [0,¢] is then
an homotopy of transversally elliptic symbols : hence they have the same
equivariant index.

Lemma 4.26 For small t we have
Uon Z5°(t) = Z5(1).

Indeed, by Proposition 4.24, Zgo(t) projects by the brst projection "% :
M x O* - M — ¢* to a Pnite union of coadjoint orbits (the (h)-ancestors
to 0) and Zp(0) projects on P. So, fort small, Uy n Z5°(t) is the subset
7Z5(t) of Z5°(t) projecting on P.

So, for small¢, we have the decompositionUp n Zo(t) = Z5(t) U Z,
where Z; is a component contained inZ@o(t). Finally, for small ¢, we have

QB(0) = Indexk (6°y,)
= Indexk (¢'|u,)
= Q) + A (M x O*,S® S0+, Z1," )-

Since [Qk (M x O*, 8 ® Sp*, Zt," 4)]¢ = 0 by Proposition 4.17 the proof
of Proposition 4.25 is completed.
4.5.4 Computation of mJ

In this section we compute
mn K
mg = [Qu (M x 0%, 8§ ® Spx, 25," o)] -

Let C be a connected component of)§ that intersects the orbit P. With
the help of Proposition 4.15, we will reduce the computation of ng to a
similar computation where the group K acting on M is replaced with the
torus Ay = H/[H, H] acting on the slice)c.

Let e PnC: & = b and u— p(p) dePnes a character offf. Then
z} is equal to K (" g_l(u) x (—p+o(h)*). Hereo(h) is the p orbit for H, so
o(h) = o(h)* and Q" (o(h)*) is the trivial representation of H.
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Let Yo =" gl(C’) be the slice relative to the connected component’
(see Section 4.5.2). ThusK) is an open neighborhood of '*1(7?) in M
di#eomorphic with K xy Yc. We see that

Zh < (K xpy Vo) x O ~ K xy (Ve x O%).
We consider the H-manifold N’ := )¢ x o(h)* and the K-manifold
N =K xy (Bgx N') = K xy (Bg x Yc x o(h)*),

where B, is a small open ball ing, centered at 0 and H-invariant.

When B, is small enough, the map(X, £) — exp(X)(—u+£), from By x
o(h)* into O*, debnes a di#eomorphism into af -invariant neighborhood of
the H-orbit —u + o(h)* in O*. Hence aK-invariant neighborhood of ZJ in
M x O* is di#teomorphic to N. Under this isomorphism, the equivariant map
"o ="s+ipx dePnesamap " onN. For ke K,X € By,y € Vc,& € o(h)*,
we have

" (k5 Xy, 8D) =R (" s(y) + exp(X)(—p +§)).-

It restricts to N’ as the H-equivariant map " /(y, §) ="s(y) — p + & with
value in h*. Furthermore, if B, is small enough, "([1;X,y,£]) belongs to
h* if and only X = 0. As X € q, we see also that(" ([1;X,y,£]),X) =
(" s(), X) + (exp(X)(—p+¢), X) = (" s(y) —pu+¢, X) = 0forall (X,y,£) €
By x Yc x o(h)*. Conditions (4.23) are satisbed. Proposition 4.15 tells us
that
mp = [Qu (N, &, Z'," ")]"

where 7' := " S1(u) x o(h)*.

Now we have to explain the nature of the Spifi bundle S’ over N’ =
Ve xo(h)*. Let Sy« be the canonical Spifi-bundle of the orbit o(h)*. Let
Sy.. be the Spirf-bundle on )Y debned by (4.30).

Proposition 4.27  We have 8’ = S;,)C@So(h)* where ngc = 8y ®C_p1a()

is a Spin°-bundle on Yc. The determinant line bundle of 837?0 is equal to

det(S)|y, ®C_oy, and the corresponding moment map is " 50 =" slye — 1
The subgroup [H, H] acts trivially on (yc,ngc).

Proof. Let \ be an element of theH-orbit Op := u + o(h). The Spin°
bundle Sp« on O* = (K\)* induces a Spift bundle S; over O% through the

relation Sox|px ~ A ¢ ® S1.
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We can check that S; is the H-Spin® bundle on 0% = (HA)* ~ o(h)*
equal to

H xy, (/\h/h$®Cf$+&($)) ~ (H SITWAN Whﬂ%) ® C_s14s)

—Jy —Jy
So(hy* ® Cpireq)

e

since A — p(A) = p — p(p) € 5*. -

As the Spin® bundle S, is equal to the product A q°® A q¢ (see Example
2.3), we know then that §" ~ Sy, ® S1 ~ Sy, ® Som)* ® C_11g)-

The relation det(ngC) = det(S)]y, ® C_o, comes from the fact that
det(Sy,.) = det(S)|ye ® C_agqy Sincepc = plu).

We consider now the H-manifold Ve equipped with the Spin®-bundle
S Let

(4.33) Qn (Ve, S, {0}) € R(H)

be the equivariant index localized on the compact component” 50 =0} =
"s=p} < Vc. Let Ay be the torus H/[H, H]. Since[H, H] acts trivially
on (Vc,S3 ) we may also debne the localized indexa,, (Vc, S, ., {0}) €
R(Ay).
We can now prove the main result of this section.
Theorem 4.28 The multiplicity mg is equal to
Apg

[0 (06.85,.10)]" = [Qa, (3. 8. 10})]

Proof. Let Z' :=" S*(u) x o(h)*. The character Oy (N',S',Z'," ") e
R(H) is equal to the equivariant index of o(N’,S’," /)|,; wherel/ — N’ is an
invariant open subset such thatt/ n Z-» = Z'. For (y,§) € N' = Yc x o(h)*
and (v,n) € Ty #N’', the endomorphisma (N', Sn+," ’)|y.4 (v, ) is equal to

v+ ("s@) —p+8& -y ®ds, . Tea®C(n+ ("sy) —p+8)-£).

Here ¢, acts on S}fc y, C2 acts on So(h)*\# and ¢; is the canonical grading
operator on 87 |y.

Sinceo(h)* is compact, we can replace the terntcz(n+ (" s(y)—p+&)-€)
simply by c2(n). Since[H, H] acts trivially on )¢, and ¢ € [, b], the vector
bPeldy — (" s(y)—n+¢)-yisequaltoy — (" s(y) —u)-y. Thus our symbol
is homotopic to the symbol

ci(v+ (" s(y) — ) - y) ®Mds, 1. + €1 ® C2(n).
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This last expression is the product symbol of theH -transversally elliptic
symbol c1(v + (" s(y) — p) - y) on Ve and of the elliptic symbol c,(n) on
o(h)*. The equivariant indices multiply under the product (as one is elliptic)
([11.[22]).

Now the H-equivariant index of cz(n) acting on Sy )« is the trivial repre-
sentation of H. Thus we obtain our theorem. We have also to remark that

H A
the identity [QH (yC,S;fC,{O})] = [QAH(yC,S§C,{O})] " follows from
the fact that [H, H] acts trivially on ()c,S7,).

5 Multiplicities and reduced spaces

In this section, we interpret the multiplicity as an equivariant index on a
reduced space.

Let O c ¢* be a regular admissible orbit, and(h) € H, so that ([h,b]) =
([em ,tm ])- In the previous section, we have proved that the multiplicity of
o in Qk (M,S) is equal to

mo = >.mj
)

where the sum runs over theK-orbits P which are (h)-ancestors ofO. Fur-

A
thermore, we have proved that nj; = [QAH(JJC,SX,’C, {0})] "

The aim of this section is to prove the following theorem.

Theorem 5.1  The multiplicity m}, is equal to the spin® index of the (pos-
sibly singular) reduced space Mp =" S*(P)/K.

However, our brst task is to give a meaning to a &"(Mp) € Z even if
Mp is singular.

5.1 Spin ¢ index on singular reduced spaces

We consider a connected oriented manifoldV, equipped with a Spirf-bundle
S. We assume that a torusG acts on the data (IV,S). An invariant con-
nexion on the determinant line bundle L = det(S) dePnes a moment map
": N — g*. We do not assume that N is compact, but we assume that
the map " is proper 3. For any ¢ € g*, the reduced spaceNy := " ~1(¢)/G is
compact.

3We will use sometimes a slightly different hypothesis : ® is proper as a map from N
to an open subset of g*.
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The purpose of this subsection is to explain how we can debne the spin
index, QSP"(N,) € Z, for any y in the weight lattice $ of the torus G.

Let gy be the generic inbnitesimal stabilizer of theG-action on N : the
image of N under the map " leaves in an a%ne space/ (N) parallel to gy; .
If £ € I(N) is a regular value of " : N — I(N), the reduced spaceNx
is a compact orbifold (as proved in [24]). We can debne Spirbundles on
orbifolds, as well as Spifi-indices.

We start with the following basic fact.

Lemma 5.2 For any regular value { € I(N) of " : N — I(N), the orbifold
Ny is oriented and equipped with a family of Spin®-bundles Sﬁ parameterized
bype$ nI(N).

Proof. Let G\ be the subtorus with Lie algebragy. Let G/ = G/GN .
The dual of the Lie algebrag’ of G’ is canonically identibed with gg; .

We assume that¢ is a regular value of " : N — [(N) : the bber
Z =" ~1(¢) is a submanifold equipped with a locally free action ofG’. Let
Ny := Z/G' be the corresponding OreducedO space, and tet Z — Ny be
the projection map. We can debne the tangent (orbi)-bundleT’ Ny to Ng.

On Z, we obtain an exact sequence 86— TZ — TN|z L [(¢")*] —
0, and an orthogonal decomposition T7 = Tg/Z @ [¢g'] where [¢'] is the
trivial bundle on Z corresponding to the subspace of ¥ formed by the
vector Pelds generated by the inbnitesimal action of’. So TN|z admits the
decomposition TN|z ~ Te/Z @ [¢'] @ [(¢')*]. We rewrite this as

(5.34) TN|z ~TeZ®[gc]

with the convention ¢’ ~ ¢’ ® iR and (g')* ~ ¢’ ® R. Note that the bundle
T/ Z is naturally identiped with 7*(T Ng).

If we take on g the orientation o(i) given by the complex structure,
there exists a unique orientationo(Nx) on N such that o(N) = o(Ng)o(3).

DePnition 5.3  Let Sy be the Spin® bundle on the vector bundle Tg/Z — Z
such that

Slz ~ 8@ [/\ gcl-
Here [\ 9c] = Z x A\ g¢ is a Spin®-bundle on the bundle [g] = Z % g¢

The Kostgnt relation shows that fo_r any X € gn, the elementeX acts on
the bbers ofS; as a multiplication by ¢'<-* > wherev is any element of ().
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Hence, for anyu € $ ~ I(IV), the action of Gy on the tensor Sy ® [C_u]is
trivial. We can then debne a Spirf-bundle S} on TNy by the relation

Sy ® [C_y] =7" (Sé,f) :

The proof of the following theorem is given in the next subsection.

Theorem 5.4  For any pue I(N)n$, consider the compact oriented orbifold
Ny associated to a generic® element € € gﬁ. Then the index

Q(Nus, Styv)
is independent of the choice of a generic and small enough €.

Thanks to the previous Theorem, one debnes the spirindex of singular
reduced spaces as follows.

Debnition 5.5 If u € $, the number QP"(Ny) is defined by the following
dichotomy

_ 0 if w¢ I(N),
Q%" (Ny) = { Q(Nyy», Sliyw)  if pe I(N) and e € gy is generic
and small enough

The invariant Q SP" () € Z vanishes if does not belongs to the relative
interior of " () in the a%ne spacel (N). It is due to the fact that we can
then approach n by elementsy + e that are not in the image " (N).

Let us consider the particular case wherg, € I(N) n$ is a regular value
of ": N — I(N) such that the reduced spaceV,, is reduced to a point. Let
mo €" ~1(u), and let ! = G’ be the stabilizer subgroup ofm, (! is Pnite).
In this case (5.34) becomes §,N =~ g¢, and o(/V,) is the quotient between
the orientation of IV and those ofgg. At the level of graded Spirf-bundles
we have

Sm, > o(Ny) /\92: ®Ly?

where Lrln/f is a one dimensional representation of ! such that
(L3282 = Ly, In this case Debnition 5.5 gives that

(5.35)  QP"(N,) = o(N,)dim [L},@@c,u]% e {~1,0,1}.

4So that p + € is a regular value of & : N — I(N).
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5.2 Proof of Theorem 5.4

In this subsection we consider a Pxegi € I(N) N $. For any e e g(N)*, we
consider the moment map " =" — pu —e.
We start with the fundamental Lemma

Lemma 5.6 The map € — [Qc(N,S," 71(0)," ) ®C_,]® is constant in a
neighborhood of 0.

Proof. Changing S to S ® [C_,], we might as well take ;1 = 0.

Let » > 0 be smallest non-zero critical value of||" |2, and let U :=
"L | €] < r/2}). Using Lemma 2.9, we haveéd n {rko = 0} =" ~1(0).

We describe now{x = 0} n U/ using a parametrization similar to those
introduced in [19][Section 6].

Let gi,i € I be the Pnite collection of inPnitesimal stabilizers for the
G-action on the compact setl/. Let D be the subset of the collection of
subspacegy- of g* such that " ~1(0) n N9 = .

Note that D is reduced to I(N) if O is regular value of " : N — I(N).
If' = giL belongs toD, and ¢ € I(V), write the orthogonal decomposition
e=¢€g + 0 With eg €', and [g € gi. Let

B ={fs =c—es," €D}
the set of 8 so obtained.

Figure 10: The point ¢ and its projections eg

We denote by Z- the zero set of the vector beldx- associated to "-.
Thus, if € is su%ciently small (j¢| < r/2),

(5.36) Zool=|J N n"B).
*eDe
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With (5.36) in hands, we see easily thatt € [0,1] — o(N,S," )]y is an
homotopy of transversally elliptic symbols oni{. Hence they have the same
index

QcU,S," 7YX0),") = QcU,S8,Z ~nU," )
D Q6(N,S," 1 (B) AN, ).

*eB.

The lemma will be proved if we check that[Qg (N, S," ~(8)nN"," +)]® =0
for any non-zero g € B-.

If B3 e B-andne" 7B )nN" ," (n) = B +e=es. SO (n),fs ) =
{es ,Bs » = 0. So the inbnitesimal action, £(3), on the Pber of the vector
bundle S, is equal to O.

The Atiyah-Segal localization formula for the Witten deformation (Re-
mark 4.13) gives

QG(N* , O (S) ®Sym(V* )7" :l(ﬁ)vn )
Z QG(X7d* (S)’X ®Sym(v* )|X7" :1(/8)7II ")

XcNB

QG (N,S," +H(B) A N"," )

where V= — N” is the normal bundle of N* in N and the sum runs over
the connected componentst of N that intersects " ().

Let us look to the inPnitesimal action of 3, denoted £(/3), on the Pbers
of the vector bundle d+ (S)|x ® Sym(N+ )| x. This action can be checked at a
point ne" 71(8) n N .As the action of 3 on the bber of the vector bundle
Sn is equal to 0, we obtain

1 I ELEIN(ED on d(S)|x,
i £0) = {2 0 on SymAN:)|x.

So we have checked thatf £(3) > 3Tr tn, (|B8]) on d« (S)[x ® Sym(N+ )| x.

Now we remark that g does not acts trivially on N, since g belongs to
the direction of the subspacel(N) = gy : this forces %Tr TNy (|8]) to be
strictly positive. Finally we see that ££(3) > 0 on d« (S)|x ® Sym(N: )|,
and then

Q6 (X, d ()] ® Sym(¥ )|x," 71(8)," +)|® = 0.

if 3 # 0. The Lemma 5.6 is proved.

The proof of Theorem 5.4 will be completed with the following
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Lemma 5.7 If p + € is a regular value of " : N — I(N), the invariant
[Qc(N,Sn," 71(0)," ) ® C_]® is equal to the index Q(Nuy,SEJru).

We assume thatu + € is a regular value of " : N — I(N) : the Pber
Z =" "Y(u + €) is a submanifold equipped with a locally free action of
G' = G/GN. Let Nyi» := Z/G' be the corresponding OreducedO space, and
let 7 : Z — N, be the projection map. We have the decomposition

(5.37) TN|z =~ 7*(T Nuy) @ [gc]-

Forany v e $ nI(N), S, is a the Spirf bundle on N+ debned by the
relation

Snlz ®Co. = 7* (Sp) ® [\ gc).

The following result is proved in [24].
Proposition 5.8  We have the following equality in R(G)

Q(N,Sn,"+H0)," ) = > Q(Nuy, Spyv) C..
el Al(N)

In particular [Qg(N,Sn," 71(0)," +) ® C_4]€ is equal to Q(Nu+",83+--).

53 rQ,Rs 00

We come back to the setting of a compactK’-manifold M, oriented and of
even dimension, that is equipped with aK-Spin® bundle S. Let Ls be its
determinant bundle, and let " s — ¢* be the moment map that is attached
to an invariant connection on Ls. We assume that there exists(h) € H, such
that ([tm,tm]) = ([h, b]). Let 3 be the center ofbh.

We consider an admissible elemenf:, € 3* such that K, = H : the
coadjoint orbit P := Ky is admissible and contained in the Dixmier sheet
E?h)' Let

Mp =" S}P)/K

In order to debne GP"(Mp) € Z we proceed as follows.

Let by 1= {¢ e h* |[Ky < H} and let Y =" g1(hg). We recall that the
map £ — p(§) is locally constant on h§. Let us Px a connected component
C of h§ : we denotepc = p(&) for any £ e C. We consider)c =" gl(C)
that is a H-submanifold of M equipped with a H-Spin® bundle Sy,,: the
associated moment map is "y =" sly. — pc.
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For any admissible elementy € C' n 3* the element
foi=p—p(p) =p—pc

belongs to the weight lattice $ of the torus Ay = H/[H, H], and the
reduced spaceMy, is equal to

(Vo) = {" yo = £}/ An.

By debnition, we take Q°P"(Mk,, ) := QSP"((Vc)g) where the last term
is computed as explained in the previous section. More precisely, let us
decompose)c into its connected components),...,);. For each j, let
3 < 3 be the generic inPnitesimal stabilizer relative to the Ay -action on ).
Then we take

QP (Mp) = QP (Migy ) = Q%" () )p,)

J

where ¢ € 3J¢ are generic and small enough.

With this dePnition of quantization of reduced spaces GP"(Mp), we
obtain the main theorem of this article, inspired by the [@Q, R] = 0 theorem
of Meinrenken-Sjamaar.

Let M be a K-manifold and S be a K-equivariant Spin®-bundle over M.
Let (h) € He such that ([¢m,tm ]) = ([b,b]), and consider the setA((h)) of
admissible orbits contained in the Dixmier sheet{%’(“b).

Theorem 5.9

(5.38) O (M, S)= > QP"(Mp)QP"(P).
PeA((H))

We end this section by giving yet another criterium for the vanishing of
Q" (M, S).

Consider the map "s : M — ¢*. At each point m € M, the di#erential
dm" s gives a mapTy M — £*. Let & < £*. From the Kostant relations,
we see thatdy," s take value in &.

Proposition 5.10  If Qx (M,S) # 0, then there exists m € M\MKX such
that Image(dm" s) = €.
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Proof. If we consider the decomposition of the slic&c = | J)) in connected
components, for Qx (M,S) # 0, then for somej, " (Yj) has non empty
interior in 3#. Herej; is the inPnitesimal stabilizer of the action of H/[H, H|
on ). Thus 3 is equal toty < b for genericm € )). So there exists a point
m € )} such that the di#erential of " s|y is surjective on 314 < b*. Now if
we considerK)) < M, then Image(dm" s) = b* @5#. This is exactly .

When the action of K is abelian, we can always reduce ourselves to
an e#tective action with ¢y = {0}. Then the support of decomposition of
Qk (M,S) is contained in the interior of " s(M) n $. If this set has no
interior point, then Qk (M,S) = 0. This small remark implies the well-
known Atiyah-Hirzebruch vanishing theorem in the spin case [2], as well as
the variant of Hattori [13].

We also note another corollary.

Corollary 5.11  If the two form &s is exact, and the K-action on M is
non-trivial then Qg (M,S) = 0.

Itis due to the fact that if & s = da, by modifying the connection onLs by «,
our moment map is constant. So if the action is non trivial, Ok (M,S) = 0.

5.4 rQ, Rs O0 on induced manifolds

Let H c K be the stabilizer subgroup of some element ig*. We adopt the
notations of Section 3.5. LetC' be a choice of a connected component &f.

Assume thatY is a compact H-manifold, and consider the manifoldM =
K xy Y. Assume that M is oriented and equipped with a K-equivariant
Spin°-bundle S. We consider the Spiri-bundle Sy on Y such that S|y =
A q¢ ® Sy. The equivariant index Qx (M, S) veribes the equation

(5.39) O (M,8) = Indf§ ( /\a® ®Qn (V. Sv)).

The aim of this section is to explain how our[Q, R] = 0 theorem matches
with the induction formula (5.39) when we apply it to both indices Ok (M, S)
and 9Oy (Y, Sy).

Let Ls be the determinant line bundle of the Spirf-bundle S. As Lg ~
K xy Ls|y we can choose an equivariant connection ohs such that the
corresponding moment map "s : M — ¢*, when restricted to Y, takes value
in h*. The determinant line bundle Ly of the Spin®-bundle Sy is equal to
Ls|ly ® C_2,., and for the moment map "v, we have "y =" s|ly — pc.
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We can assume that there exists a Levi subalgebrac § such that the
conjugacy class of generic stabilizef[hy , by |) = ([tm , tm ]) is equal to([L, 1]),
otherwise Qx (M,S) = Qn (Y, Sy) = 0. We note A((I)) (resp. Ay((l))) the
set of K-admissible (resp. H-admissible) orbits belonging to the Dixmier
sheeté?([)) (resp. bz‘([))).

For any orbit H¢ < h*, we debne theK-orbit tc(HE) := K(HE+ pe) =
K(&+pc). Let Ay((1))c be the subset of4,((l)) formed by the H-coadjoint
orbit P’ such that P’ + pc is contained in h§. Let hz"[) c b* be the Dixmier
sheet of coadjoint orbits H¢ with Hy conjugate to L.

We have the following basic fact.

Lemma 5.12 e If P € Ay((I))c, then tc(P’) belongs to Ag((l)).
o For any P € A¢((l)) we have

(5.40) Pabiy =P by =] [P +pc)
7)/

where the finite union runs over the orbits P’ € Ay((l))c such that tc(P’) =
P.

Proof. Let P’ e Ay((I))c. Then P’ = Hyu with a H-admissible element
e bh* such that K, = L and p + pc € h5. We have Ky g, = Huyg, =
H, =L and

(5.41) A+ pe —p (u+pc) = p—p" (1) + pc — per

where C’ is the connected compoent oh§ containing a + pc. AS pc — pcr
belongs to the weight lattice we see thatu + pc is K-admissible. The prst
point is proved. o

The inclusions ]_[tc(p,):p(P’ +pc) < Pn hz"[) cPn hz"[) are obvious.
Consider now aH-orbit 7 contained in P m%. We have T = H\ where A

is K-admissible. As\ e % the stabilizer Hg is H-conjugated to a subgroup
containing L. In the other hand, the stabilizer sugroup Kg is K-conjugate
to L. If we compare the dimension of the connectd subgroupélg and Kg
we see thatKg = Hg and then HA € P n hz‘[) : the element\ can be choosen
so that Kg = Hg = L.

We considerp = A — pc so that tc(Hp) = P. We see brst that Hy, =
Hg = L and (5.41) shows that 1 is H-admissible. We have checked that
Hpe Ay(()and T = Hu+pc < Pn h?[). The second point is also proved.
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For the H-manifold Y, our [@, R] = 0 Theorem says thatQy (Y, Sy) is
spin

equal to Zp,eAh(([)) QPN (Yp QP (P). If we apply the induction formula
proved in Proposition 3.22, we get that

PreAqy (1)

=Y € QP(Vp)QP" (tc(P)
PreAy((N)c

= > mPQP"(P)
Pede((1)

with m? = 3% pn_p el QP"(Ypr). Here ef is the sign e where C’ is
the connected component ofy§ that contains P’ + pc (see Section 3.5).

Finally, we recover the [@Q, R] = 0 Theorem for the K-manifold M with
the help of the following

Proposition 5.13  For any P € A¢((1)), the term m” is equal to QSP™ (Mp).

Proof. Identity (5.40) and the fact that the image of " v is contained
in % gives automatically that

"SPy = [ Exu"iUP).
tc('P’)—P

Hence the reduced spacé/p =" gl(P)/K decomposes as a disjoint sum

[Lopry—p ME where ME" = (K xu " (*(P))/K is equal (as a set) to
Yo =" (1(P')/H.

Let P’ € Ae((l)) such that tc(P’) = P. The proposition will be proved
if we show that QPN (ME') = €& QPN (V).

Consider i such that P = Hp and Hy, = L. Take p/ = p+ pc : we
have P = K/ and K, = L. Let B c [* be a small ball centered aty, and
consider the slice) =" gl(B) : the set HY < Y is a H-invariant open
neighborhood of ";1(7?’) di#eomorphic to H x| Y. Consider the K -invariant
open subset

MP = K x4 (Hy) M

We note that M*" ~ K x| ), and the reduction of A", equipped with the
moment map " s|, »/, relatively to P is equal to M77§'.
By debnition, the quantity Q Spi”(M];') is equal to

[QL (Y, Sy ®C_viex (), {o})]-
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where Sy is the Spinf-bundle debned by relationS|y = A; , £/[® Sy.
B I3
On the other hand, the quantity QSP"(Y/) is equal to

[QL (y7 SS) ® C7p+&H(p)a {0})]L

where S), is the Spin-bundle debned by relationSy [y = /\; , [/h®S3,. Now
if we use the fact that S|y = /\JC t/h ® Sy, we can check that

Sy ® Ciu/Jr&K(u/) ~ 68, SS] ® C*“JF&H(“)

at the level of L-equivariant graded Spirf-bundles. The proof of the relation
QPN (ME') = €' QP (Yp/) then follows.

6 Examples

6.1 PpCq

We consider the simplest case of the theory. LetP! := P(C) be the
projective space of (complex) dimension one. Consider the (ample) line
bundle £ — P!, dual of the tautological bundle. It is obtained as quo-
tient of the trivial line bundle C2\{(0,0)} x C on C?\{(0,0)} by the action
u - (21, 22,2) = (uz1,uzz,uz) of C*. We consider the action of 7 = S* on
L — P! debned byt - 21, 22, 2] = [t 7121, 22, 2]. _

Let S(n) be the Spirf-bundle A TP!®LE". The character Q""" (M, S(n))
is equal to HO(PY,O(n)) — HY(PY,O(n)) where O(n) is the sheaf of holo-
morphic sections of L2". Note that the holomorphic line bundle £&" is not
ample if n < 0. We have

o QP"(M,S(n)) = — Y4y, 1 tK whenn < —2,
o QP"(M,S(~1)) =0,
o QF"(M,8(n)) = o t* whenn > 0.

The determinant line bundle of S(n) is Ly = [C_1]®L®?"+2 where[C_4]
is the trivial line bundle equipped with the representation ¢t~* on C.
Remark that P! is homogeneous undeil/(2), so there exists a unique
U(2)-invariant connection on L,. The corresponding moment map "s) is
such that
|21/ 1

(6.42) " smy([z1, 22]) = (n + 1)W 5

The image In =" s(n)(M) is
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e the interval [—3,n + 3] whenn > 0,
e apoint {—3} whenn = -1,
e the interval [n + 3,—3] whenn < -2,

It is in agreement with our theorem. Indeed all characters occurring in
Q™" (M, S(n)) are the integral points in the relative interior of I, and all
reduced spaces are points.

If we consider simply the action of T on P!, the choice of connec-
tion may vary. In fact, given any smooth function f on R, we can mod-

. . 2
ify the connection such that " sny([21,22]) = —2+ (n+ 1)% +

2 2 2
f(‘zl|‘22i|‘22|2)|21|in||12|2(1 — ﬁ—zm‘lzﬂm ). Let &_ be the curvature of L, then
the Duistermaat-Heckman measure(" s(n))«&L is independent of the choice
of the connection and is equal to the characteristic function ofI,.

Take for example

Es _15 |21/
|21[% + |22]2 |21]2 + | 22|

(1-

sl 2) = 5 +(n+1)

Figure 11 is the graph on "g,) for n = 4 in terms of z = W‘erl\%zlf
varying between 0 and 1. We see that the image of 5.4 is the interval

[-%,3,]. But the image of the signed measure is stil[—3, 3]. Above the

integral points in [—22, —1], the reduced space is not connected, it consists
of two points giving opposite contributions to the index. So our theorem

holds.

Figure 11: The graph of "
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6.2 The Hirzebruch surface

We consider M to be the Hirzebruch surface. Representf\/ as the quotient
of U = C? — {(0,0)} x C2 — {(0,0)} by the free action of C* x C* acting by

(u,v) - (21, 22, 23, 24) = (uz1, uz2, UV23,V24)

and we denote by|z1, 22, 23, z4] € M the equivalence class ofz1, 22, 23, z4).
The map 7 : [21, 22, 23, 24] — [21, 22] is a Pbration of M on P;(C) with Pber
P(C).

Consider the line bundle L(n1, n2) obtained as quotient of the trivial line
bundle ¢/ x C on U by the action

(u,v) - (21, 22, 23, 24, 2) = (u21, uz2, UV23, V24, u" V"2 2)

for (u,v) € C* x C*. The line bundle L(ni,ny) is ample if and only if
n1 > np > 0.

We have a canonical action of the groupK := U(2) on M : g-[Z1, Z>] =
(921, Z>] for Zy1, Z» € C?> —{(0,0)} and the line bundle L(n1,n) with action
921, 22, z] = [9Z1, Z2, 2] is K-equivariant.

We are interested in the (virtual) K-module

HO(M,O(ny,n2)) — HY(M, O(n1,n2)) + H*(M,O(n1,n2))

where O(n1,n2) be the sheaf of holomorphic sections of.(n1, n2).

In this case, it is in fact possible to compute directly individual cohomol-
ogy groups H' (M, O(ny,n7)). However, we will describe here only results
on the alternate sum and relate them to the moment map.

Let T = U(1) x U(1) be the maximal torus of K. The setY :=
{[#1, 22, 23,24] € M |21 = 0} is a T-invariant complex submanifold of M
(with trivial action of (¢1,1)). The map

Y — Pl(C)7 [07 22, %3, 24] = [(Zz)ilz’e? Z4]

is a T-equivariant isomorphism and the map (g,y) €e K xY — g-ye M
factorizes through an isomorphismK x1 Y ~ M. Thus M is an induced
manifold.

For any (a,b) € Z%, we denote C,p the 1-dimensional representation
of T associated to the character(ty,tp) — t35. We denote by e}, e} the
canonical bases of* ~ R?. The Weyl chamber is tLy = {xef +yes, x> y}.
The elementse], e5 are conjugated by the Weyl group.

The line bundle L(ny,n2), when restricted to Y ~ P1(C), is isomorphic
to LO"2 ® [Co,—n, |-
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We consider L = L(3,2) the line bundle obtained from the reduction
of the trivial line bundle A®*C* with natural action of C* x C*. We denote
Sm = AcTM (resp. Sy := A\ TY) the Spin®-bundle associated to the
complex structure on M (resp. Y).

We denote by ¢ : Y — [0,1] the map dePned byy(y) = ﬁ%z if

y =~ [a1, az].

Proposition 6.1 e Let S(n1,n2) be the spin bundle Sy ® L(ni,n2) on M.
Its determinant line bundle is

Lnin, = [Cdet] ® L ®L(2n1,2n2)

where [Cget] — M is the trivial U(2)-equivariant line bundle associated to
the character det: U(2) — C*.

o There exists a connection on Ln, n, such that the corresponding mo-
ment map " nyn, - K x7Y — € is defined by

e ([ 0] = (= 11+ 2) & (2 + Dp(w)) - + 5(ef + )

Proof. For the second point, we construct al (2)-invariant connection
on Ln, n, by choosing the T-invariant connection on (Ln, n,)|y having mo-
ment map (—(ny + 3) + (n2 + 1)p(y)) €5 + (e + e3) under the T-action
(see Equation (6.42)).

From Proposition 6.1, it is not di%cult to describe the OKirwan setO
' (n1,n2) = Image(" n,n,) N 5, for all cases ofny,np. It depends of the
signs ofng + %, ny+1,n;—ny+ % that is, as we are working with integers,
the signs ofn; + 1, no + 1 and n1 — np. We concentrate in the case where
n1+ 1> 0,n2 +1 > 0 (other cases are similarly treated). Then, we have
two cases:

e If n1 > ny, then the Kirwan set' (n1,n2) is the interval

1 3 1
[(n1 —n2) + PUC 5]<—e§) + é(ef +€3).

e If ny > ng, then the Kirwan set ' (n1,n2) is the union of the intervals

1 1
[0, —n1 — é]ef + é(ef +e3)
and
3 £ 1 * *
(0,71 + é](—ez) + 5(61 +e3).
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If n1 > ny > 0 the curvature of the corresponding connection oty n, =
L(2n1 + 3,2n2 + 2) (which is an ample line bundle) is non degenerate, thus
the image is a convex subset ot%, (in agreement with Kirwan convexity
theorem) while for n, > n; the image set is not convex.

The character Qx (n1,n2) := Ok (M, S(n1,n2)) is equal to the (virtual)
K-module H°(M, O(n1,n2)) — HY(M, O(n1,nz)) + H>(M, O(n1,n7)) where
O(n1,n2) is the sheaf of holomorphic sections of.(n1,ny).

Let $-0 = {(A\1,A2); \1 = A2} be the set of dominant weights forU (2).
We index the representations ofU(2) by p + $50. Here p = (3,5) and
A1, A2 are integers. We then have

Tgkp =5

the space of complex polynomials orC? homogeneous of degrek.
If n, > 0, we know that Ot (Y, Sy ®L®"2) = ZEZ:O t'g. From the induction
formula (3.17) (or direct computation via Cech cohomology !') we obtain
o If n1 = ny, then

Ok (n1,n2) = Z |

k=ni—n>
o If ny >-n1,then
ni np—ni1-—2
Qk (n1,n2) = I(ZOW(;,_k—;) - kZO Tk+3.1)

Let us checked how our theorem works in these cases. First, we notice
that we are in a multiplicity free case : all the non-empty reduced spaces
are points.

» Consider the case where; > n,. We see that the parameter(3, —k—3)
belongs to the relative interior of the interval ' (ni,n2). In particular for
b = (0,0), the unique point in the relative interior of the interval ' (0,0) is
p. This is in agreement to the fact that the representation Ok (0, 0) is the
trivial representation of K.

o Consider the case where;, > ny. We see that the parameter(3, —k—3)
belongs to the relative interior of [—ny — 3, 0]e3 + 3(ef + %) if and only if
k < ni. Similarly, the parameter (k + %, g) belongs to the relative interior
of [0,np — ny — %]ef + %(ef +e3) ifand only if k <mnp —ng — 2.

In Figures 6.2, 6.2, 13, we draw the Kirwan subsets off ; corresponding
to the values a = [8,5],¢ = [3,6]. The circle points on the red line repre-
sents the admissible points occurring with multiplicity 1 in Qg (n1,n2). The
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diamond points on the blue line represents the admissible points occurring
with multiplicity —1 in QO (n1,n2).

Figure 12: K-Multiplicities for Qg (8,5)

Figure 13: K-Multiplicities for Qx (3, 6)

Consider nowM as a7-manifold. Let" | : M — t* be the moment map
relative to the action of 7" which is the composite of " : M — ¢* with the
projection £ — t*. Thus, the image is the convex hull of ' (ng,n2) andQits
symmetric image with respect to the diagonal.

Consider brst the case where; = no = 0. Thus our determinant bundle
Loo = L(3,2) is ample. The image of the moment map '§, : M — t* is
equal to the convex polytope ' with vertices (0, 3),(3,0), (3, —1), (-1, 3),
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the images of the 4 bxed points[1,0,1,0], [1,0,0,1],[0,1,1,0],[0,1,0,1].
The only integral point in the interior of the polytope is (0,0) and the re-
duced spacg” () ~*((0,0))/T is a point. The representation """ (M, S(0, 0))
is indeed the trivial representation of 7'.

5 / /‘

EE /n q
0594
3 @

Figure 14: T-multiplicities for Qrt (0, 0)

We now concentrate on the caséni,ny) = (3,6). The line bundle L :=
L3 6 is not an ample bundle, so that its curvature & is degenerate, and the
Liouville form 8. = &_ A &_ is a signed measure on/. Let us draw the
Duistermaat measure(" )./, a signed measure ort*. In red the measure
is with value 1, in blue the measure is with value—1.

We also verify that our theorem is true. Indeed the representation
Or (M>8(37 6)) = Ok (M78(37 6)>|T is

Tty e 2t i Yt 2t 3t 2ty Lt M 2ty Sty — tats — 3t

The X\ € Z? such that t* occurs in Ot (M, S(3,6)) are the integral points
in the interior of the image of " | (M) : they have multiplicity +1, and the
reduced space are points.

6.3 A SUp3q manifold

Consider C* with its canonical basis {eg,...,es}. Let K ~ SU(3) be the
subgroup of SU(4) that bxes eg.

Let T = S(U(1) x U(1) x U(1)) be the maximal torus of K with Lie
algebrat = {(x1,22,23),>; =i = 0}, and Weyl chamber t£, := {{1 > & >
£3,2, & = 0}). We choose the fundamental rootswi,w, so that K;, =
S(U2)xU(1))and K;, = S(U(1) xU(2)). Recall that w1, w, generates the
weight lattice $ < t* so that $-09 = Nw; + Nw,. Note also that p = w1 + w>.
For any A € $-0 + p, we denoterg the irreducible representation of K with
highest weight A — p.

Let X = {0 c Ly c L, c C% dim L; = i} be the homogeneous partial
Rag manifold under the action of SU(4). We have two lines bundles overX:
,Cl(x) = [, and ﬁz(l‘) = Lz/Ll for z = (Ll,Lz).
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Figure 15: T-multiplicities for non ample bundle on Hirzebruch surface

Our object of study is the complex submanifold
M = {(Ll,Lz) e X | Ce4 C Lz}.

The group K acts on M, and the generic stabilizer of the action ig K ,, K, | ~
SU(2). We consider the family of lines bundles

L(a,b) = LM @ L Plm, (a,b) e N2

Let Sm := Ac TM be the Spirf-bundle associated to the complex structure
on M. We compute the characters

Qk (a,b) := Ok (M,Sm ® L(a,b)) € R(K).

Again
dim M

O (a,b) = > (—1)'H'(M,0(L(a,b))).
i=0
We notice that K;, corresponds to the subgroup ofK that bxes the
line Ces. The setY := {(L1,L2) € X| Ly = Cez @ Cea} is a Kj ,-invariant
complex submanifold of M such that the map (k,y) e K xY — kye M
factorizes through an isomorphismK xk Y ~ M. Notice that [K),, K ,]
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acts trivially on Y. Thus we are in the OidealOsituation studied in Section
5.4.
If we take a = 4 and b > 1 we get that

b—1 a—4
(6.43) O (a,0) = = Y T 11— ), Tl o4&
k=0 j=0

In particular the multiplicity of g (the trivial representation) in Qg (a,b)
is equal to —2.

We now verify the formula (5.38) in our case. The Spifi-bundle Sy is
equal to Sk/ , ® K XK oy Sy. The corresponding determinant line bundle
det(Sw ) satisbes

det(Sm) = K XK oy Czy,®K XK oy det(Sy)
= K xx,, Ca, @ LY

Hence for the Spirf-bundle Sy ® £(a,b) we have

det(Sm ® L(a,b)) = det(Su)® L(a, b)*?
= K Xk, Cabi2y, ® LAY,

The line bundle det(Sy ® L(a,b)) is equipped with a natural holomorphic

and hermitian connection V. To compute the corresponding moment map

"ab: M — t*, we notice that £; = K xg,, £~1 where £ — Pl is the

prequantum line bundle overP; (equipped with the Fubini-Study symplectic

form). If we denote ¢ : Y ~ P! — [0, 1] the function debPned byy([21, 22]) =

2
2] 7, We see that

[zl +[z2l
"ap([k,y]) = k[((0+1) = (a+b—D)p(y)) wi] .

for [k,y] € M. In this case, the Kirwan set " 5 n(M) N t£, is the non convex
set[0,b + 1jwr U [0, a — 2]wo.

We know (see Exemple 3.10) that the setA((¥ ,)) is equal to the collec-
tion of orbits K (12 w;),n e N,i = 1,2, and we haveQx (K (3wi)) = 0 and
Ok (K (3w)) = 7 ,+& When k > 0.

If we apply (5.38), we see thatmy, , +& occurs in Qk (a, b) only if % <
b+1: sok e {0,...,b—1}. Similarly 7y ,,g 0ccurs inQx (a,b) only if % <
a—2:s0je{0,...,a—4}. For all this cases the corresponding reduced
spaces are points and one could check that the corresponding quantizations
are all equal to —1 (see (5.35)).

Finally we have checked that (5.38) allows us to recover (6.43).
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