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1 Introduction

Let M be a compact connected manifold. We assume thatM is even dimen-
sional and oriented. We consider a spinc structure on M , and denote byS
the corresponding Spinc bundle. Let K be a compact connected Lie group
acting on M and S and we denote byD : ! pM,S`q Ñ ! pM,S´q the corre-
spondingK-equivariant Spinc Dirac operator. The equivariant index of D,
denotedQK pM,Sq, belongs to the Grothendieck group of representations of
K :

QK pM,Sq “
ÿ

! P pK

mpπq π.

An important example is when M is a compact complex manifold,K
a compact group of holomorphic transformations ofM , and L any holo-
morphic K-equivariant line bundle on M , not necessarily ample. Then the
Dolbeaut operator twisted by L can be realized as a Spinc Dirac opera-
tor D acting on sections of a Spinc-bundle S. In this case QK pM,Sq “ř

qp´1qqH0,qpM,Lq.
Another example is whenM is a compact even dimensional oriented

manifold with a K-invariant spin structure. Let Sspin be the corresponding
canonical spin bundle,L be any K-equivariant line bundle, and take the
Spinc bundle Sspin b L. Then QK pM,Sspin b Lq is the index of the Dirac
operator associated to the spin structure twisted by the line bundleL.
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The aim of this article is to give a geometric description of the multiplic-
ity m pπq in the spirit of the Guillemin-Sternberg phenomenon rQ,Rs “ 0
[10, 17, 18, 28, 20]. After the remarkable results of Meinrenken-Sjamaar [18],
it was tempting to Þnd in what way we can extend these results to other
situations. Consider the determinant line bundle L “ detpSq of the spinc

structure. This is a K-equivariant complex line bundle onM . The choice of
a K-invariant hermitian metric and of a K-invariant hermitian connection
∇ on L determines a moment map

" S : M Ñ k˚

by the relation LpXq ´ ∇X M
“ 2ix" S , Xy, for all X P k. If M is spin and

S “ Sspin bL, then " S is the Òmoment mapÓ associated to a connection on
L.

We compute mpπq in term of the reduced ÒmanifoldsÓ "́ 1
S

pKξq{K. This
formula extends the result of [21]. However, in this article, we do not assume
any hypothesis on the line bundleL, in particular we do not assume that the
curvature of the connection∇ is a symplectic form. In this pre-symplectic
setting, a partial answer to this question has been obtained by [12, 8, 9, 5]
when K is a torus.

In a recent preprint [14], Hochs and Mathai use our result to obtain a
rQ,Rs “ 0 theorem in the case of an action of a connected Lie groupG on a
Spinc manifold M . In their work, G or M are not necessarily compact but
the G-action on M is proper and co-compact : in this context they are able
to come back to the compact setting by AbelÕs slice theorem.

Results obtained here have been announced in [23].

1.1 The result

We start to explain our result in the torus case. The general case reduces
(in spirit) to this case, using an appropriate slice for theK-action on M .

Let T be a torus acting e#ectively onM , and let S Ñ M be a T -
equivariant Spinc-bundle (with connection) on M . In contrast to the sym-
plectic case, the image "SpMq might not be convex and depends of the
choice of the connection. Let $Ă t˚ be the lattice of weights. If µ P $, we
denote by Cµ the corresponding one dimensional representation ofT . The
topological spaceMµ “ " ´1

S
pµq{T , which may not be connected, is an orb-

ifold provided with a Spinc-structure when µ in t˚ is a regular value of "S .
In this case we deÞne the integer QspinpMµq as the index of the correspond-
ing Spinc Dirac operator on the orbifold Mµ . We can deÞne QspinpMµq even
if µ is a singular value. Postponing this deÞnition, our result states that
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Figure 1: T -multiplicities for non ample bundle on Hirzebruch surface

QT pM,Sq “
ÿ

µP! X" S pM q
QspinpMµq Cµ .

Here is the deÞnition of QspinpMµq (see Section 5.1). We approachµ by
a regular valueµ` �, and we deÞne QspinpMµq as the index of a Spinc Dirac
operator on the orbifold Mµ`" , and this is independent of the choice of�
su%ciently close. Remark here thatµ has to be an interior point of " SpMq

in order for QspinpMµq to be non zero, as otherwise we can takeµ` � not in
the image. In a forthcoming article, we will give a more detailed description
of the function µ Ñ QspinpMµq in terms of locally quasi-polynomial functions
on t˚.

When M is a toric manifold, this result was obtained by Karshon-
Tolman. In Figure 1, we draw the picture of the function µ ÞÑ QspinpMµq

for the Hirzebruch surface, and a non ample line bundle on it (we give the
details of this example in the last section). The image of "S is the union
of the two large triangles in red and blue. The multiplicities are 1 on the
integral points of the interior of the red triangle, and ´1 on the integral
points of the interior of the blue triangle.

Now consider the case of a compact connected Lie groupK acting on M
and S. Before describing precisely the multiplicities ofQK pM,Sq, we Þrst
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give a vanishing result.
Let Hk be the set of conjugacy classes of the reductive algebrask#, ξ P k˚.

We group the coadjoint orbits according to the conjugacy classphq P Hk of
the stabilizer, and we consider the Dixmier sheetk˚

phq of orbits Kξ with k#

conjugated to h. We denote by H the connected subgroup ofK with Lie
algebrah. If z is the center ofh, let z˚

0 be the set ofξ P z˚, such that k# “ h.
We see then that the Dixmier sheetk˚

phq is equal toKz˚
0.

Let pkM q be the generic inÞnitesimal stabilizer of theK-action on M .
We prove the following vanishing result in Sections 4.5.1 and 4.5.2.

Theorem 1.1 If QK pM,Sq is non zero, then there exists a unique phq P Hk

such that :

• prkM , kM sq “ prh, hsq,

• the pullback " ´1
S

pk˚
phqq is open and dense in M .

A typical example of a couplepM,Sq satisfying the conditions of Theo-
rem 1.1 if whenM is equal toKˆH Y with Y a compactH{rH,Hs-manifold
(see Subsection 5.4). The Spinc-bundle onM determines a Spinc-bundle SY

on Y such that the moment map " SY
takes value in z˚ (z is the Lie algebra

of H{rH,Hs). In this case, it is easy to computeQK pM,Sq in terms of
QH pY,SY q via an induction formula.

In spirit, we are in this situation. Indeed we can deÞne the non-compact
ÒsliceÓY “ " ´1

S
pz˚

0q which is a H{rH,Hs submanifold of M such that KY
is a dense open subset ofM .

In order to study the K-multiplicities of QK pM,Sq, we need a geometric
parametrization of the dual pK.

We say that a coadjoint orbit P Ă k˚ is admissible ifP carries a Spinc-
bundle SP such that the corresponding moment map "S is the inclusion
P ‹Ñ k˚. We denote simply by Qspin

K pPq the elementQK pP,SPq P RpKq. It
is either 0 or an irreducible representation ofK, and the map

O ÞÑ πO :“ Qspin
K pOq

deÞnes a bijection between the regular admissible orbits and the dualpK.
Denote by Apphqq the set of admissible orbits contained in the Dixmier

sheetk˚
phq. When O is a regular admissible orbit, a coadjoint orbitP P Apphqq

is called aphq-ancestor ofO if Qspin
K pPq “ πO.

When pM,Sq satisfy the conditions of Theorem 1.1, we can deÞne the
Spinc index QspinpMPq P Z of the reduced spaceMP “ " ´1

S
pPq{K, for any
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P P Apphqq. We use the sliceY and the deformation procedure, as explained
in the abelian case.

We obtain the following rQ,Rs “ 0 theorem which is the main result of
the paper.

Theorem 1.2 Assume that prkM , kM sq “ prh, hsq with phq P Hk.
‚ The multiplicity of the representation πO in QK pM,Sq is equal to

ÿ

P

QspinpMPq

where the sum runs over the phq-ancestor of O. In other words

QK pM,Sq “
ÿ

PPApphqq
QspinpMPqQspin

K pPq.

‚ Furthermore, each term QspinpMPq P Z does not depend on the choice
of the connection on the determinant line bundle detpSq.

It may be useful to rephrase this theorem by describing the parametriza-
tion of admissible orbits by parameters belonging to the closed Weyl chamber
t˚ě0. Let $ ě0 :“ $ X t˚ě0 be the set of dominant weights, and letρ be the
half sum of the positive roots.

The set of regular admissible orbits is indexed by the set $ě0 ` ρ: if
λ P $ ě0 ` ρ, the coadjoint orbit Kλ is regular admissible andπK$ is the
representation with highest weight λ ´ ρ.

Denote by F the set of the relative interiors of the faces oft˚ě0. Thus
t˚ě0 “

š
%PF σ. The face t˚ą0 is the open face inF .

Let σ P F . The stabilizer K# of a point ξ P σ depends only ofσ. We
denote it by K%, and by k% its Lie algebra. We choose onk% the system
of positive roots compatible with t˚ě0, and let ρK σ be the corresponding
ρ. When µ P σ, the coadjoint orbit Kµ is admissible if and only if λ “

µ ´ ρ ` ρK σ P $.
The map F ÝÑ Hk, σ ÞÑ pk%q, is surjective but not injective. We denote

by Fpphqq the set of faces oft˚ě0 such that pk%q “ phq.
Using the above parameters, we may rephrase Theorem 1.2 as follows.

Theorem 1.3 Assume that prkM , kM sq “ prh, hsq with phq P Hk. Let λ P

$ ě0 ` ρ and let m$ P Z be the multiplicity of the representation πK$ in
QK pM,Sq. We have

(1.1) m$ “
ÿ

σPF pphqq
$´&KσP%

QspinpMK p$´&Kσ qq.
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Figure 2: K-multiplicities and ancestors

More explicitly, the sum (1.1) is taken over the facesσ of the Weyl
chamber such that

(1.2) prkM , kM sq “ prk%, k%sq, " SpMq X σ ‰ H, λ P tσ ` ρK σu.

In Section 6.3, we give an example of aSUp3q-manifold M with generic
stabilizer SUp2q, and a Spinc bundle S where severalσ contribute to the
multiplicity of a representation πK$ in QK pM,Sq. On Figure 2, the picture
of the decomposition ofQK pM,Sq is given in terms of the representations
Qspin

K pPq associated to theSUp2q-ancestorsP. All reduced spaces are points,
but the multiplicity Q spinpMPq are equal to ´1, following from the orien-
tation rule. On the picture, the links between admissible regular orbitsO
and their ancestorsP are indicated by segments. We see that the orbit
Opρq of ρ has two ancestorsP1 and P2, so that the multiplicity of the trivial
representation is equal to

QspinpMP1 q ` QspinpMP2 q “ ´2

and comes from two di#erent faces of the Weyl chamber.

If the generic stabilizer of the action of K in M is abelian, expression
(1.1) simpliÞes as follows. Consider the sliceY “ " ´1

S
pt˚ą0q which is a T -

invariant submanifold. Let " Y be the restriction of " S to Y . If QK pM,Sq

is non zero, thenKY is a dense open subset ofM , and we have simply

(1.3) m$ “ QspinpY$q
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whereY$ “ " ´1
Y pλq{T . In other words

QK pM,Sq “
ÿ

$P! ě0`&

QspinpY$qπK$ .

In particular, if the group K is the circle group, andλ is a regular value
of the moment map ", Identity (1.3) was obtained in [5].

1.2 Techniques of the proof

Consider the Kirwan vector Þeld κS on M : at m P M , κS is the tangent
vector obtained by the inÞnitesimal action of ´" Spmq at m P M (we have
identiÞed k and k˚). We use a topological deformationσ' of the symbol σ
of the Dirac operator D by pushing the zero section of T̊M inside T˚M
using the Kirwan vector Þeld κS . We call this deformation the Witten
deformation, as it was used by Witten (in the symplectic setting) to show
that the computation of integrals of equivariant cohomology classes onM
reduces to the study of contributions coming from a neighborhood ofZS , the
set of zeroes ofκS , leading to the so called non abelian localization formula.

Here we apply the same technique to compute the indexQK pM,Sq as
a sum of equivariant indices of transversally elliptic operators associated
to connected componentsZ of ZS . We are able to identify them to some
basic transversally elliptic symbols whose indices were computed by Atiyah-
Singer (see [1]). Although these indices are inÞnite dimensional represen-
tations, they are easier to understand than the original Þnite dimensional
representation QK pM,Sq (an analogue, strongly related via the theory of
toric manifolds, is the Brianchon-Gram decomposition of the characteristic
function of a compact convex polytopeP as an alternate sum of character-
istic functions of cones). We give an example of the decomposition of the
representationQK pM,Sq in Subsection 4.2.

All properties of the K -theory version of Witten deformation that we
use here were previously proved in [20]. However, we have written in [24] a
hopefully more readable description of the functorial properties of this non
abelian localization formula in K -theory.

To compute the multiplicity of πO in QK pM,Sq, we use the shifting
trick and compute the K-invariant part of the equivariant index QK pP,SP q

where P is the product manifold M ˆ O˚. Let ZP be the zero set of the
corresponding Kirwan vector ÞeldκP and σ' the deformed symbol. The
computation of the equivariant index is thus reduced to the study of the
deformed symbolσ' in a neighborhood ofZP . We have to single out the
componentsZ such that the trivial representation of K occurs with non
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zero multiplicity. Here is where we discover that, for QK pM,Sq to be non
zero, it is necessary that the semi-simple part of the generic stabilizerkM of
the action of K on M is equal to the semi-simple part of a Levi subalgebra
h of k. It follows that such a component Z is described rather simply as
an induced manifold K ˆH pY ˆ ophqq, with Y a H{rH,Hs manifold, and
ophq the rH,Hs-orbit of the corresponding ρrH,H s element. Then we use the
fact that the quantization of the orbit of ρ is the trivial representation. In
fact, to determine the contributing components Z, we study a function dP :
ZP Ñ R relating the representation ofKm on TmM and the norm of " Spmq.
Here Km is the stabilizer of m P M . It relies on the Òmagical inequalityÓ
(Corollary 3.15) on distance of regular weights to faces of the Weyl chamber.
This step di#ers from the crucial step in the proof of rQ,Rs “ 0 theorem in
the symplectic case. Both theorems are somewhat both magical, but each
one on its own. It maybe useful for the reader to read Þrst [24], where we
recall the Þrst author proof of rQ,Rs “ 0 in the Hamiltonian case, where
the strategy is straightforward. This strategy is also explained in more
combinatorial terms in Szenes-Vergne [26].

1.3 Outline of the article

Let us explain the contents of the di#erent sections of the article, and their
main use in the Þnal proof.

‚ In Section 2, we give the deÞnition of the index of a Spinc-bundle.
‚ In Section 3, we describe the canonical Spinc-bundle on admissible

coadjoint orbits (see (3.12)). For a K-admissible coadjoint orbit P, we
determine the regular admissible orbitO such that if Qspin

K pPq is not zero,
then Qspin

K pPq “ πO (Proposition 3.8).
We prove the magical inequality (Corollary 3.15) on distance of the

shifted Weyl chamber ρK ` t˚ě0 to admissible µ P t˚ (that is Kµ is an
admissible orbit). This inequality on Weyl chambers will be used over and
over again in this article.

‚ In Section 4, we deÞne the Witten deformation and recall some of its
properties (proved in [20, 24]). It allows us to reduce the computation of
QK pM,Sq to indices qZ of simpler transversally elliptic operators deÞned in
neighborhoods of connected components ofZS “ tκS “ 0u.

We introduce a function dS : ZS Ñ R. If dS takes strictly positive values
on some componentZ of ZS , then the K-invariant part of the (virtual)
representation qZ is equal to 0 (Proposition 4.17). This is a very important
technical proposition.

If O is an admissible regular coadjoint orbit, the shifting trick leads us
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to study the manifold M ˆ O˚ with Spinc-bundle S b SO˚ . We want to
select the componentZ of ZSbSO ˚ so that rqZ sK is not zero. Theorem
4.22 summarizes the geometric structure enjoyed byM and S when there
exists such a component. Although this theorem is natural (as we tried to
explain it in the introduction), we are able to obtain it only using Witten
deformation on M ˆ O˚ (for all regular admissible orbits O) and a careful
study of the function dSbSO ˚ .

We show that the componentsZ for which rqZ sK ‰ 0 are contained
in the subsets "´1

S
pPq ˆ O˚ of M ˆ O˚ where P is a phq-ancestor to O

(Proposition 4.24).
We then obtain that the multiplicity m O of πO in QK pM,Sq is the sumř

P
mP

O
parametrized by the phq-ancestors ofO. In Proposition 4.25, we

prove that each term mP
O

is independent of the choice of the connection.
‚ In Section 5, we prove that mP

O
is equal to QspinpMPq. Here we explain

how to deÞne indices on singular reduced spaces. The main theorem is their
invariance under small deformation.

We then have done all the work needed to be able to prove the main
theorem.

We Þnally verify that (fortunately) the statement rQ,Rs “ 0 in the Spinc

case is compatible with Spinc induction.
‚ The last section is dedicated to some examples.
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Notations

Throughout the paper :

• K denotes a compact connected Lie group with Lie algebrak.

• T is a maximal torus in K with Lie algebra t.

• $ Ă t˚ is the weight lattice of T : every µ P $ deÞnes a 1-dimensional
T -representation, denotedCµ , where t “ exppXq acts by tµ :“ ei xµ,X y.

• We Þx aK-invariant inner product p¨, ¨q on k. This allows us to identify
k and k˚ when needed.

We denote by x¨, ¨y the natural duality between k and k˚.
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• We denote by RpKq the representation ring of K : an elementE P

RpKq can be represented as Þnite sumE “
ř

µP pK mµπµ , with m µ P Z.

The multiplicity of the trivial representation is denoted rEsK .

• We denote by öRpKq the space ofZ-valued functions on öK. An element
E P öRpKq can be represented as an inÞnite sumE “

ř
µP pK mpµqπµ ,

with m pµq P Z.

• If H is a closed subgroup ofK, the induction map Ind K
H : öRpHq Ñ

öRpKq is the dual of the restriction morphism RpKq Ñ RpHq. In
particular rIndK

H pEqsK “ rEsH .

• When K acts on a setX, the stabilizer subgroup ofx P X is denoted
Kx :“ tk P K | k ¨ x “ xu. The Lie algebra ofKx is denotedkx .

• An element ξ P k˚ is called regular if K# is a maximal torus of K.

• When K acts on a manifoldM , we denoteXM pmq :“ d
dt |t“0e´tX ¨ m

the vector Þeld generated bý X P k. Sometimes we will also use the
notation XM pmq “ ´X ¨ m. The set of zeroes of the vector ÞeldXM

is denotedMX .

• If V is a complex (ungraded) vector space, then the exterior spaceŹ
V “

Ź` V ‘
Ź´ V will be Z{2Z graded in even and odd elements.

• If E1 “ E`
1 ‘ E´

1 and E2 “ E`
2 ‘ E´

2 are two Z{2Z graded vector
spaces (or vector bundles), the tensor productE1 bE2 is Z{2Z-graded
with pE1 bE2q` “ E`

1 bE`
2 ‘E´

1 bE´
2 and pE1 bE2q´ “ E´

1 bE`
2 ‘

E`
1 bE´

2 . Similarly the spaces EndpEi q areZ{2Z graded. The action of
EndpE1qbEndpE2q on E1bE2 obeys the usual sign rules: for example,
if f P EndpE2q´, v1 P E´

1 and v2 P E2, then fpv1 b v2q “ ´v1 b fv2.

• If E is a vector space andM a manifold, we denote byrEs the trivial
vector bundle onM with Þber E.

2 Spin c equivariant index

2.1 Spin c modules

Let V be an oriented Euclidean space of even dimensionn “ 2�. We denote
by ClpV q its Cli#ord algebra. If e1, . . . , en is an oriented orthonormal frame
of V , we deÞne the element

� :“ piq(e1 ¨ ¨ ¨ en P ClpV q

11



that depends only of the orientation. We have�2 “ 1 and �v “ ´v� for any
v P V .

If E is a ClpV q-module, the Cli#ord map is denoted cE : ClpV q Ñ

EndpEq. We see then that the element of order two�E :“ cE p�q deÞnes
a Z{2Z-graduation on E by deÞning E˘ :“ kerpIdE ¯ �E q. Moreover the
maps cE pvq : E Ñ E for v P V interchange the subspacesE` and E´. This
graduation will be called the canonical graduation of the Cli#ord moduleE.

We follow the conventions of [3]. Recall the following fundamental fact.

Proposition 2.1 Let V be an even dimensional Euclidean space.

• There exists a complex ClpV q-module S such that the Clifford mor-
phism cS : ClpV q Ñ EndpSq induces an isomorphism of complex alge-
bra ClpV q b C » EndpSq.

• The Clifford module S is unique up to isomorphism. We call it the
spinor ClpV q-module.

• Any complex ClpV q-module E has the following decomposition

(2.4) E » S b homClpV qpS,Eq

where homClpV qpS,Eq is the vector space spanned by the ClpV q-complex
linear maps from S to E. If V is oriented and the Clifford modules S
and E carry their canonical grading, then (2.4) is an isomorphism of
graded Clifford CLpV q-modules.

Let V “ V1 ‘ V2 be an orthogonal decomposition of even dimensional
Euclidean spaces. We choose an orientationopV1q on V1. There is a one-
to-one correspondence between the graded ClpV2q-modules and the graded
ClpV q-modules deÞned as follows. LetS1 be the spinor module for ClpV1q.
If W is a ClpV2q-module, the vector spaceE :“ S1 b W is a ClpV q-module
with the Cli#ord map deÞned by

cE pv1 ‘ v2q :“ cS1 pv1q b IdW ` �S1 b cW pv2q.

Here vi P Vi and �S1 P EndpS1q deÞnes the canonical graduation ofS1. Con-
versely, if E is a graded ClpV q-module, the vector space W :“
homClpV1qpS1, Eq formed by the complex linear mapsf : S1 Ñ E com-
muting with the action of Cl pV1q has a natural structure of ClpV2q graded
module andE » S1 b W .

If we Þx an orientation opV q on V , it Þxes an orientation opV2q on V2 by
the relation opV q “ opV1qopV2q. Then the Cli#ord modules E and W carries
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their canonical Z{2Z graduation, and E » S1 b W becomes an identity of
graded Cli#ord modules.

Example 2.2 Let H be an Euclidean vector space equipped with a complex
structure J P OpHq: we denote by

Ź
J H the exterior product of the space

H considered as a complex vector space with complex structure J . Denote
by mpvq the exterior multiplication by v. The action c of H on

Ź
J H given

by cpvq “ mpvq ´ mpvq˚ satisfies cpvq2 “ ´}v}2Id. Thus,
Ź

J H, equipped
with the action c, is a realization of the spinor module for H. Note that the
group UpJq of unitary transformations of H acts naturally on

Ź
J H. If one

choose the orientation on H induced by the complex structure, one sees that
the canonical grading is p

Ź
J Hq˘ “

Ź˘
J H.

Consider another complex structure J 1 P OpHq : the vector space
Ź

J 1 H
is another spinor module for H. We denote by �J 1

J the ratio between the
orientations defined by J and J 1. One can check that

(2.5)
ľ

J 1
H » �J 1

J C) b
ľ

J

H,

as a graded ClpHq-module and also as a graded UpJ 1q X UpJq-module. Here
C) is the 1-dimensional representation of UpJ 1q X UpJq associated to the
unique character χ defined by the relation χpgq2 “ detJ 1pgq detJ pgq´1, @g P

UpJ 1q X UpJq.

Example 2.3 When V “ Q‘Q with Q an Euclidean space, we can identify
V with QC by px, yq Ñ x ‘ iy. Thus SQ :“

Ź
QC is a realization of the

spinor module for V . It carries a natural action of the orthogonal group
OpQq acting diagonally. If Q carries a complex structure J P OpQq, we
can consider the spin modules

Ź
J Q and

Ź
´J Q for Q. We have then the

isomorphism SQ »
Ź

J Q b
Ź

´J Q of graded ClpV q-modules (it is also an
isomorphism of UpJq-modules).

2.2 Spin c structures

Consider now the case of an Euclidean vector bundleV Ñ M of even rank.
Let Cl pVq Ñ M be the associated Cli#ord algebra bundle. A complex vector
bundle E Ñ M is a ClpVq-module if there is a bundle algebra morphism
cE : ClpVq ÝÑ EndpEq.

13



DeÞnition 2.4 Let S Ñ M be a ClpVq-module such that the map cS induces
an isomorphism ClpVq bR C ÝÑ EndpSq. Then we say that S is a Spinc-
bundle for V.

As in the linear case, an orientation on the vector bundleV determines a
Z{2Z grading of the vector bundleS (called the canonical graduation) such
that for any v P Vm , the linear map1 cSpm, vq : Sm Ñ Sm is odd.

Example 2.5 When H Ñ M is a Hermitian vector bundle, the complex
vector bundle

Ź
H is a Spinc bundle for H. If one choose the orientation

of the vector bundle H induced by the complex structure, one sees that the
canonical grading is p

Ź
Hq˘ “

Ź˘ H.

We assume that the vector bundleV is oriented, and we consider two
Spinc-bundles S,S 1 for V, both with their canonical grading. We have the
following identity of graded Spinc-bundles : S 1 » S b LS,S1 where LS,S1 is a
complex line bundle onM deÞned by the relation

(2.6) LS,S1 :“ homClpVqpS,S 1q.

DeÞnition 2.6 Let V Ñ M be an Euclidean vector bundle of even rank.
The determinant line bundle of a Spinc-bundle S on V is the line bundle
LS Ñ M defined by the relation

LS :“ homClpVqpS,Sq

where S is the ClpVq-module with opposite complex structure. Sometimes
LS is also denoted detpSq.

Example 2.7 When H Ñ M is a Hermitian vector bundle, the determinant
line bundle of the Spinc-bundle

Ź
H is detpHq :“

Źmax H.

If S and S 1 are two Spinc-bundles for V, we see that

LS1 “ LS b pLS,S1qb2.

Assume that V “ V1 ‘ V2 is an orthogonal sum of Euclidean vector
bundles of even rank. We assume thatV1 is oriented, and let S1 be a Spinc-
bundle for V1 that we equip with its canonical grading. If E is a Cli#ord
bundle for V, then we have the following isomorphism2

(2.7) E » S1 b W
1The map cS pm,´q : Vm Ñ EndpSmq will also be denoted by cSm .
2The proof is identical to the linear case explained earlier.
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whereW :“ homClpV1qpS1, Eq is a Cli#ord bundle for V2. If V is oriented, it
Þxes an orientationopV2q on V2 by the relation opVq “ opV1qopV2q. Then the
Cli#ord modules E and W carries their canonical Z{2Z grading, and (2.7)
becomes an identity of graded Cli#ord modules.

In the particular situation where S is a Spinc-bundle for V, then S »

S1 b S2 whereS2 :“ homClpV1qpS1,Sq is a Spinc-bundle for V2. At the level
of determinant line bundles we obtainLS “ LS1 b LS2 .

Let us end this section by recalling the notion of Spin-structure and
Spinc-structure. Let V Ñ M be an oriented Euclidean vector bundle of
rank n, and let PSOpVq be its orthogonal frame bundle : it is a principal
SOn bundle overM .

Let us consider the spinor group Spinn which is the double cover of the
group SOn. The group Spinn is a subgroup of the group Spincn which covers
SOn with Þber Up1q.

A Spin structure on V is a Spinn-principal bundle PSpin pVq over M
together with a Spinn- equivariant map PSpin pVq Ñ PSOpVq.

We assume now thatV is of even rankn “ 2�. Let Sn be the irreducible
complex spin representation of Spinn . Recall that Sn “ S̀n ‘ Śn inherits
a canonical Cli#ord action c : Rn Ñ EndpSnq which is Spinn-equivariant,
and which interchanges the graduation:cpvq : S̆n Ñ S̄n . The spinor bundle
attached to the Spin-structure PSpin pVq is

S :“ PSpin pVq ˆSpin
n

Sn .

A Spinc-bundle for V determines a Spinc structure, that is a principal
bundle overM with structure group Spinc

n . When V admits a Spin-structure,
any Spinc-bundle for V is of the form SL “ Sspin bL whereSspin is the spinor
bundle attached to the Spin-structure and L is a line bundle onM . Then
the determinant line bundle for SL is Lb2.

2.3 Moment maps and Kirwan vector Þeld

In this section, we consider the case of a Riemannian manifoldM acted on
by a compact Lie group K. Let S Ñ M be a Spinc-bundle on M . If the
K-action lifts to the Spin c-bundle S in such a way that the bundle map
cS : ClpTMq Ñ EndpSq commutes with the K-action, we say that S deÞnes
a K-equivariant Spinc-bundle on M . In this case, the K-action lifts also
to the determinant line bundle LS . The choice of an invariant Hermitian
connection ∇ on LS determines an equivariant map "S : M Ñ k˚ and a
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2-form &S on M by means of the Kostant relations

(2.8) LpXq ´ ∇X M
“ 2ix" S , Xy and ∇2 “ ´2i&S

for every X P k. HereLpXq denotes the inÞnitesimal action ofX P k on the
sections ofLS . We will say that " S is the moment map for S (it depends
however of the choice of a connection).

Via the equivariant Bianchi formula, Relations (2.8) induce the relations

(2.9) ιpXM q&S “ ´dx" S , Xy and d&S “ 0

for every X P k. It follows that " S is a moment map, as deÞned in [24].
In particular the function m Ñ x" Spmq, Xy is locally constant onMX .

Remark 2.8 Let b P k and m P Mb, the set of zeroes of bM . We consider the
linear actions Lpbq|Sm

and Lpbq|LS m
on the fibers at m of the Spinc-bundle

S and the line bundle LS . Kostant relations imply Lpbq|LS m
“ 2ix" Spmq, by.

The irreducibility of S implies that

Lpbq|Sm
“ i x" Spmq, by IdSm

.

Furthermore the function m Ñ x" Spmq, by is locally constant on Mb.

Note that the closed 2-form &S , which is half of the curvature of LS ,
is not (in general) a symplectic form. Furthermore, if we take any (real
valued) invariant 1-form A on M , ∇` iA is another connection onLS . The
corresponding curvature and moment map will be modiÞed in &S ´ 1

2dA
and " S ´ 1

2" A where " A : M Ñ k˚ is deÞned by the relationx" A , Xy “

´ιpXM qA.
Let " : M Ñ k be a K-equivariant map. We deÞne theK-invariant

vector Þeldκ" on M by

(2.10) κ" pmq :“ ´" pmq ¨ m,

and we call it the Kirwan vector Þeld associated to ". The set whereκ"

vanishes is a K-invariant subset that we denote byZ" Ă M .

We identify k˚ to k by our choice ofK-invariant scalar product and we will
have a particular interest in the equivariant map " S : M Ñ k˚ » k associated
to the Spinc-bundle S. In this case we may denote theK-invariant vector
Þeldκ" S simply by κS (even if it depends of the choice of a connection):

κSpmq :“ ´" Spmq ¨ m.

and we denoteZ" by ZS .
As " S is a moment map, we have the following basic description (see

[20, 24]).
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Lemma 2.9 If the manifold M is compact, the set " SpZSq is a Þnite col-
lection of coadjoint orbits. For any coadjoint orbit O “ Kβ, we have

ZS X " ´1
S

pOq “ KpM * X " ´1
S

pβqq.

Here we have identified β P k˚ to an element in k still denoted by β.
Furthermore, any β in the image " SpZSq is such that }β}2 is a critical
value of the map }" S}2.

Remark 2.10 Although the map " S as well as the set ZS vary when we
vary the connection, we see that the image " SpZSq is contained in a finite
set of coadjoint orbits that does not depend of the connection (see [24]).

Figure 3 describes the set "SpZSq for the action of the diagonal torus of
K “ SUp3q on the orbit Kρ equipped with its canonical Spinc-bundle.

Figure 3: The set " SpZSq

2.4 Equivariant index

Assume in this section that the Riemannian K-manifold M is compact,
even dimensional, oriented, and equipped with aK-equivariant Spinc-bundle
S Ñ M . The orientation induces a decompositionS “ S` ‘ S´, and
the corresponding Spinc Dirac operator is a Þrst order elliptic operator
DS : ! pM,S`q Ñ ! pM,S´q [3, 7]. Its principal symbol is the bundle map
σpM,Sq P ! pT˚M, hompp˚S`, p˚S´qq deÞned by the relation

σpM,Sqpm, νq “ cSm
p÷νq : S`

m ÝÑ S´
m .

Here ν P T˚M Ñ ÷ν P TM is the identiÞcation deÞned by the Riemannian
structure.

If W Ñ M is a complexK-vector bundle, we can deÞne similarly the
twisted Dirac operator DW

S
: ! pM,S` b Wq Ñ ! pM,S´ b Wq.
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DeÞnition 2.11 Let S Ñ M be an equivariant Spinc-bundle. We denote :
‚ QK pM,Sq P RpKq the equivariant index of the operator DS ,
‚ QK pM,S b Wq P RpKq the equivariant index of the operator DW

S
.

Let pApMqpXq be the equivariant öA-genus class ofM : it is an equivari-
ant analytic function from a neighborhood of 0 P k with value in the alge-
bra of di#erential forms on M . Berline-Vergne equivariant index formula
[3][Theorem 8.2] asserts that

(2.11) QK pM,SqpeX q “ p
i

2π
q

dim M

2

ż

M
ei p# S `x" S ,X yq pApMqpXq

for X P k small enough. Here we writeQK pM,SqpeX q for the trace of the
element eX P K in the virtual representation Q K pM,Sq of K. It shows in
particular that Q K pM,Sq P RpKq is a topological invariant : it only depends
of the class of the equivariant form &S ` x" S , Xy, which representshalf of
the Þrst equivariant Chern class of the line bundleLS .

Example 2.12 We consider the simplest case of the theory. Let M :“
P1pCq be the projective space of (complex) dimension one. We write an
element of M as rz1, z2s in homogeneous coordinates. Consider the (ample)
line bundle L Ñ P1, dual of the tautological bundle. Let Spnq be the Spinc-
bundle

Ź
C TM b Lbn . The virtual representation QT pM,Spnqq is equal to

H0pP1,Opnqq ´ H1pP1,Opnqq. Then for n ě 0,

QT pM,Spnqq “

nÿ

k“0

tk .

Here T “ tt P C; |t| “ 1u acts on rz1, z2s via t ¨ rz1, z2s “ rt´1z1, z2s.

3 Coadjoint orbits and the magical inequality

In this section, we describe Spinc-bundles on admissible coadjoint orbits of
K and the equivariant indices of the associated Dirac operators.

3.1 Conjugacy classes of centralizers

For any ξ P k˚, the stabilizer K# is a connected subgroup ofK with same
rank. We denote by k# its Lie algebra.

Let Hk be the set of conjugacy classes of the reductive algebrask#, ξ P k˚.
The setHk contains the conjugacy class formed by the Cartan sub-algebras.
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It contains also k (stabilizer of 0). A coadjoint orbit O belongs to the Dixmier
sheetk˚

phq, for phq P Hk if pk#q “ phq for (any) ξ P O.

Remark 3.1 If h “ k#, then hC is the Levi subalgebra of the parabolic sub-
algebra determined by ξ. Parabolics are classified by subsets of simple roots.
However, different conjugacy classes of parabolics might give rise to the same
conjugacy class of Levi subalgebras (as seen immediately for type An).

We denote by Sk the set of conjugacy classes of the semi-simple parts
rh, hs of the elementsphq P Hk.

Lemma 3.2 The map phq Ñ prh, hsq induces a bijection between Hk and Sk

Proof. Assume that rh, hs “ rh1, h1s “ s. Consider n the normalizer of s.
Then h and h1 are both contained in n. Let t, t1 be Cartan subalgebras of
h, h1. Then t and t1 are conjugated inside the normalizer ofs. As h “ s ` t,
we see thath is conjugated to h1.

The connected Lie subgroup with Lie algebrah is denoted H, that is
if h “ k#, then H “ K#. We write h “ z ‘ rh, hs where z is the center
and rh, hs is the semi-simple part of h. Thus h˚ “ z˚ ‘ rh, hs˚ and z˚ is
the set of elements inh˚ vanishing on the semi-simple part ofh. We write
k “ h ‘ rz, ks, so we embedh˚ in k˚ as aH-invariant subspace, that is we
consider an elementξ P h˚ also as an element ofk˚ vanishing on rz, ks.

3.2 Statement of results on admissible coadjoint orbits

We Þrst deÞne theρ-orbit. Let T be a Cartan subgroup ofK. Then t˚ is
imbedded in k˚ as the subspace ofT -invariant elements. Choose a system
of positive roots ' ` Ă t˚, and let ρK “ 1

2

ř
+ą0 α. The deÞnition of ρK

requires the choice of a Cartan subgroupT and of a positive root system.
However a di#erent choice leads to a conjugate element. Thus we can make
the following deÞnition.

DeÞnition 3.3 We denote by opkq the coadjoint orbit of ρK P k˚. We call
opkq the ρ-orbit.

If K is abelian, then opkq is t0u.

The notion of admissible coadjoint orbit is deÞned in [6] for any real
Lie group G. When K is a compact connected Lie group, we adopt the
following equivalent deÞnition: a coadjoint orbit O Ă k˚ is admissible ifO
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carries aK-equivariant Spinc-bundle SO, such that the associated moment
map is the injection O ‹Ñ k˚. If Kξ is an admissible orbit, we also say that
the element ξ is admissible. An admissible coadjoint orbit O is oriented
by its symplectic structure, and we denote by Qspin

K pOq :“ QK pO,SOq the
corresponding equivariant spinc index.

We have xξ, rk#, k#sy “ 0. The quotient spaceq “ k{k# is equipped with
the symplectic form &#p øX, øY q :“ xξ, rX,Y sy, and with a unique K#-invariant
complex structure J# such that &#p´, J#´q is a scalar product. We denote
by q# the space k{k# considered as a complex vector space via the
complex structure J#. Any element X P k# deÞnes a complex linear map
adpXq : q# Ñ q#.

DeÞnition 3.4 ‚ For any ξ P k˚, we denote by ρpξq the element of k˚
# such

that

xρpξq, Xy “
1
2i

Tr qξadpXq, X P k#.

We extend ρpξq to an element of k˚, that we still denote by ρpξq.

Thus, given a ξ P t˚, and H “ K#, we have written ρK as sum of
ρK ξ ` ρpξq, according to the decompositionk “ k# ‘ q.

If iθ : k# Ñ iR is the di#erential of a character of K#, we denote by
C, the corresponding 1-dimensional representation ofK#, and by rC, s “

K ˆK ξ
C, the corresponding line bundle over the coadjoint orbitKξ Ă k˚.

The condition that Kξ is admissible means that there exists a Spinc-bundle
S on Kξ such that detpSq “ rC2#s (2iξ needs to be the di#erential of a
character ofK#).

Lemma 3.5 1. xρpξq, rk#, k#sy “ 0.

2. The coadjoint orbit Kξ is admissible if and only if ipξ ´ ρpξqq is the
differential of a 1-dimensional representation of K#.

Proof. Consider the characterk ÞÑ detqξpkq of K#. Its di#erential is
2iρpξq. Thus xρpξq, rk#, k#sy “ 0.

We can equipKξ » K{K# with the Spinc-bundle

S# :“ K ˆK ξ

ľ
q#

with determinant line bundle det pS#q “ rC2&p#qs. Any other K-equivariant
Spinc-bundle on Kξ is of the form S# b rC, s where iθ is the di#erential of
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a character ofK#. Then detpS# b rC, sq “ rC2#s if and only if ξ ´ ρpξq “ θ.
The lemma then follows.

In particular the orbit opkq is admissible. Indeed ifξ “ ρK , then ξ ´

ρpξq “ 0.

An admissible coadjoint orbit O “ Kξ is then equipped with the Spinc-
bundle

(3.12) S˘
O

:“ K ˆK ξ

´ľ˘
q# b C#´&p#q

¯
.

Its Spinc equivariant index is

(3.13) Qspin
K pOq “ IndK

K ξ

´ľ
q# b C#´&p#q

¯
.

See [24].
The following proposition is well known. We will recall its proof in

Lemma 3.11 in the next subsection.

Proposition 3.6 • The map O ÞÑ πO :“ Qspin
K pOq defines a bijection

between the set of regular admissible orbits and pK.

• Qspin
K popkqq is the trivial representation of K.

We now describe the representation Qspin
K pOq attached to any admissible

orbit in terms of regular admissible orbits.

DeÞnition 3.7 To any coadjoint orbit O Ă k˚, we associate the coadjoint
orbit spOq Ă k˚ which is defined as follows : if O “ Kµ, take spOq “ Kξ
with ξ P µ ` opkµq. We call spOq the shift of the orbit O.

If O is regular, spOq “ O. If O “ t0u, then spOq “ opkq.

The following proposition will be proved in the next subsection.

Proposition 3.8 Let P be an admissible orbit.

• P˚ :“ ´P is also admissible and Qspin
K pP˚q “ Qspin

K pPq˚.

• If spPq is regular, then spPq is also admissible.

• Conversely, if O is regular and admissible, and P is such that spPq “

O, then P is admissible.
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• Ð If spPq is not regular, then Qspin
K pPq “ 0.

Ð If spPq is regular, then Qspin
K pPq “ Qspin

K pspPqq “ πspPq.

It is important to understand what are the admissible orbits P such that
spPq is equal to a Þxed regular admissible orbitO.

For the remaining part of this subsection, we Þx a conjugacy classphq.
We denote byApphqq the set of admissible orbits belonging to the Dixmier
sheetk˚

phq.

DeÞnition 3.9 Let O Ă k˚ be a K-orbit. A K-orbit P is called a phq

ancestor of O is P Ă k˚
phq and spPq “ O.

We make the choice of a connected Lie subgroupH with Lie algebra h
and write h “ z ‘ rh, hs. We denote by z˚

0 the set of elementsξ P z˚ such
that K# “ H. The orbit ophq (the ρ-orbit for H) is contained in rh, hs˚. The
orbit P is a phq-ancestor to O, if and only if there exists µ P z˚

0 such that
Kµ “ P and ρH P ophq such that O “ Kpµ ` ρH q. If O is admissible then
P is admissible (see Lemma 3.16).

Given a regular admissible orbitO, there might be severalphq-ancestors
to O.

Example 3.10 Consider the group K “ SUp3q and let phq be the centralizer
class of a subregular element f P k˚ with centralizer H “ SpUp2q ˆ Up1qq.

We consider the Cartan subalgebra of diagonal matrices and choose a
Weyl chamber. Let ω1,ω2 be the two fundamental weights. Let σ1,σ2 be the
half lines Rą0ω1, Rą0ω2. The set Apphqq is equal to the collection of orbits
K ¨ p1`2n

2 ω1q, n P Z (see Figure 4).

Figure 4: H-admissible orbits
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As ´ω1 is conjugated to ω2, we see that the set Apphqq is equal to the
collection of orbits K ¨ p1`2n

2 ωi q, n P Zě0, i “ 1, 2. Here we have chosen the
representatives in the chosen closed Weyl chamber.

One has spK ¨ p1`2n
2 ωi qq “ KpρK `pn´1qωi q. Thus the shifted orbit is a

regular orbit if and only if n ą 0. For n “ 1, both admissible orbits K ¨ 3
2ω1

and K ¨ p ´3
2 ω1q “ K ¨ 3

2ω2 are phq-ancestors to the orbit KρK “ opkq.
Both admissible orbits P1 “ K ¨ 1

2ω1 and P2 “ K ¨ 1
2ω2 are such that

Qspin
K pPi q “ 0
In Figure 5, we draw the link between H-admissible orbits and their

respective shifts.

Figure 5: H-admissible orbits and their shifts

There might also be several classes of conjugacyphq such that O admits
a phq-ancestor P. For example, let O “ opkq. Then, for any h P Hk, the
orbit KpρK ´ ρH q is a phq-ancestor to O. Here we have chosen a Cartan
subgroup T contained in H, H “ K# and a positive root system such that
ξ is dominant to deÞneρK and ρH .

3.3 Admissible coadjoint orbits and Weyl chamber

In order to parameterize coadjoint orbits, we choose a Cartan subgroupT
of K with Lie algebra t. Let $ Ă t˚ be the lattice of weights of T . Let W
be the Weyl group. Choose a system of positive roots '̀ Ă t˚, and let

ρK “
1
2

ÿ

+ą0

α.
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If α P t˚ is a root, we denote byH+ P t the corresponding coroot (so
xα, H+ y “ 2). Then xρK , H+ y “ 1 if and only if α is a simple root.

DeÞne the positive closed Weyl chamber by

t˚ě0 “ tξ P t˚; xξ, H+ y ě 0 for all α ą 0u,

and we denote by $ě0 :“ $ Xt˚ě0 the set of dominant weights. Any coadjoint
orbit O of K is of the form O “ Kξ with tξu “ O X t˚ě0.

We index the set pK of classes of Þnite dimensional irreducible repre-
sentations of K by the set ρK ` $ ě0. The irreducible representation π$

corresponding to λ P ρK ` $ ě0 is the irreducible representation with in-
Þnitesimal character λ. Its highest weight is λ ´ ρK . The representation
π&K is the trivial representation of K. The Weyl character formula for the
representationπ$ is, for X P t,

Tr π$peX q “

ř
wPW �pwqei xw$,X y

ś
+ą0 e

i x+,X y{2 ´ e´i x+,X y{2
.

For any µ P t˚, we consider its elementρpµq P k˚ (DeÞnition 3.4).

Lemma 3.11 Let λ P t˚ě0 be a regular admissible element of k˚. Then

1. λ P ρK ` $ ě0.

2. Qspin
K pKλq “ π$ .

Proof. Let λ P t˚ě0 be regular and admissible, thenρpλq “ ρK , soλ P tρK `

$ uX t˚ą0. If α is a simple root, thenthe integer xλ´ρK , H+ y “ xµ,H+ y´1
is non negative, asxλ, H+ y ą 0. Soλ ´ ρK is a dominant weight.

Atiyah-Bott Þxed point for the trace of the representation Qspin
K pKλq is

Weyl character formula.
Thus we obtain Lemma 3.11 and Proposition 3.6.

If h P Hk, we denote by}ρH } the norm of any element in the coadjoint
orbit ophq Ă h˚ for H.

The positive Weyl chamber is the simplicial cone determined by the
equations xλ, H+ y ě 0 for the simple rootsα ě 0. We denote byFk the set
of the relative interiors of the faces of t˚ě0. Thus t˚ě0 “

š
%PFk

σ, and we
denote by t˚ą0 P Fk the interior of t˚ě0.

Let σ P Fk. Thus Rσ, the linear span of σ, is the subspace determined
by xλ, H+ y “ 0 where theα varies over a subset of the simple roots.
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The stabilizer K# does not depend of the choice of the pointξ P σ : we
denote it by K%. The map σ Ñ k% induces a surjective map fromFk to Hk.

For σ P Fk, we have the decompositionk% “ rk%, k%s ‘ zpk%q with dual
decompositionk˚

% “ rk%, k%s˚ ‘ Rσ. Let

ρK σ :“
1
2

ÿ

αą0
p+,%q“0

α

be the ρ-element of the groupK% associated to the positive root system
tα ą 0, pα,σq “ 0u for K%. Then

ρK ´ ρK σ “
1
2

ÿ

αą0
p+,%qą0

α,

and for any µ P σ, the elementρpµq P k˚ is equal to ρK ´ρK σ . In particular,
ρK ´ ρK σ vanishes onrk%, k%s, so ρK ´ ρK σ P Rσ, while ρK σ P rk%, k%s˚. The
decompositionρK “ pρK ´ ρK σq ` ρK σ is an orthogonal decomposition.

Figure 6 shows this orthogonal decomposition ofρ for the caseSUp3q.

Figure 6: Orthogonal decomposition ofρK

We start by proving some geometric properties of the Weyl chamber. The
subsetρK ` t˚ě0 of the positive Weyl chamber will be called the shifted Weyl
chamber. It is determined by the inequalities xλ, H+ y ě 1 for any simple
root α ě 0, and thus xλ, H+ y ě 1 for any positive root. The following
proposition is illustrated in Figure 7 in the caseSUp3q.

Proposition 3.12 1. If λ P ρK ` t˚ě0, then pλ,λq ě pλ, ρK q ě pρK , ρK q.
The equality pλ,λq “ pλ, ρK q holds only if λ “ ρK .
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Figure 7: Distance of a singular elementµ to a strongly regular elementλ

2. Let σ P Fk.

‚ The orthogonal projection of ξ P t˚ą0 onto Rσ belongs to σ.

‚ We have ρK ´ ρK σ P σ for any σ P Fk.

3. For any phq P Hk, }ρK } ě }ρH }, and }ρK } “ }ρH } only if H “ K.

4. If λ P ρK ` t˚ě0 and µ P t˚, then:

(3.14) }λ ´ µ}2 ě
1
2

ÿ

αą0
p+,µ q“0

pλ,αq ě }ρK µ}2.

The equality

}λ ´ µ}2 “
1
2

ÿ

αą0
p+,µ q“0

pλ,αq

holds if and only if µ belongs to t˚ě0, and if µ is the projection of λ on
the face σ of t˚ě0 containing µ. In particular λ ´ ρpλq “ µ ´ ρpµq.

Proof. If λ “ ρK ` c, with c P t˚ě0, inequalities pλ,λq ě pλ, ρK q ě

pρK , ρK q follows from the fact that pλ, cq and pρK , cq are non negative, as
the scalar product of two elements oft˚ě0 is non negative.

The second point follows from the fact that the dual cone to t˚ě0 is
generated by the simple rootsαi , and pαi ,αj q ď 0, if i ‰ j.
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We have the orthogonal decompositionρK “ ρK σ ` pρK ´ ρK σq: hence
ρK ´ ρK σ , which is the orthogonal projection of ρK P t˚ą0 on Rσ, belongs to
σ.

For the third point, we might choose H conjugated to K%, so }ρK }2 “

}ρK σ}2 ` }ρK ´ ρK σ}2.
We now prove the last point.
Let kµ be the centralizer ofµ and let z be the center ofkµ . Consider the

orthogonal decompositiont˚ “ z˚ ‘ a˚ where a is a Cartan subalgebra for
rkµ , kµ s, that is a “

ř
p+,µ q“0 RH+ . Let ρK µ P a˚ be the ρ element for the

system ' 1
` “ tα ą 0, pα, µq “ 0u of rkµ , kµ s.

Let us write λ “ ρK ` c, with c dominant, and decomposeρK “ p0 ` p1,
c “ c0 ` c1, with p0, c0 P z˚, p1, c1 P a˚. Thus λ “ λ0 ` λ1, with λ0 P z˚ and
λ1 “ p1 `c1. Now p1 belongs to the shifted Weyl chamber ina˚. Indeed, for
any α ą 0 such that pα, µq “ 0, we havexp1, H+ y “ xρK , H+ y ě 1. Similarly
c1 is dominant for the system ' 1

`.
As µ P z˚, we have }λ ´ µ}2 “ }λ0 ´ µ}2 ` }p1 ` c1}2. Using the Þrst

point of 3.12, we obtain

}λ ´ µ}2 “ }λ0 ´ µ}2 ` }p1 ` c1}2 ě pp1 ` c1, ρ
K µq ě }ρK µ}2.

As
pp1 ` c1, ρ

K µq “
1
2

ÿ

αą0
p+,µ q“0

pλ,αq

we obtain Inequalities (3.14).
If the inequality }λ ´ µ}2 ě pp1 ` c1, ρK µq is an equality, then c1 “ 0,

p1 “ ρK µ , and λ0 “ µ. Thus for roots α P ' 1
`, xρK µ , H+ y “ xρK , H+ y. As

ρK µ takes value 1 on simple roots forKµ , it follows that the set S1 of simple
roots for the system ' 1

` is contained in the set of simple roots for ' `. As
a “ ‘+PS1 RH+ , the orthogonal z of a is Rσ for the face σ of t˚ orthogonal
to the subset S1 of simple roots. We then haveKµ “ K%. Furthermore,
λ “ µ ` ρK σ . Thus µ is the projection of λ on Rσ, so µ P σ Ă t˚ě0. As
ρpλq “ ρK , and ρpµq “ ρK ´ ρK σ , we obtain λ ´ ρpλq “ µ ´ ρpµq. So all
assertions are proved.

Corollary 3.13 Let σ P Fk. The distance between the shifted Weyl chamber
ρK ` t˚ě0 and the vector space Rσ is equal to }ρK σ}. Furthermore, if ρK `λ1,
with λ1 P t˚ě0 and λ P Rσ are at distance }ρK σ}, then ρK ` λ1 “ ρK σ ` λ.

Proof. Indeed, if µ P Rσ, and λ P ρK ` t˚ě0, then Inequality (3.14)
implies that }λ ´ µ} ě }ρK µ}. As K% Ă Kµ , }ρK µ} ě }ρK σ}.
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Let us reformulate Inequalities (3.14) above independently of the choice
of a positive root system.

DeÞnition 3.14 A regular element λ P k˚ determines a closed positive Weyl
chamber C$ Ă k˚

$ . We say that λ is very regular if λ P ρpλq ` C$ .

Regular admissible elements are very regular.
Here is the magical inequality that we will use over and over again to

get vanishing results.

Corollary 3.15 (The magical inequality) Let λ, µ be two elements of
t˚. Assume that λ is very regular, then

}λ ´ µ}2 ě
1
2

ÿ

pα,λqą0
p+,µ q“0

pλ,αq ě }ρK µ}2.

If the equality

}λ ´ µ}2 “
1
2

ÿ

pα,λqą0
p+,µ q“0

pλ,αq

holds, then µ P C$ and λ ´ ρpλq “ µ ´ ρpµq.

Let us now study the admissible coadjoint orbits and their shifts. The
following lemma just restate properties which follow directly from the pre-
ceding discussions.

Lemma 3.16 For any µ P σ,

• ρpµq “ ρK ´ ρK σ and ρK ´ ρK σ P σ,

• opkµq “ K%ρK σ ,

• Kµ is admissible if and only if µ ` ρK σ P ρK ` $ ,

• spKµq “ Kpµ ` ρK σq.

Proposition 3.17 below says that the shifts ofadmissible elements stay
in the closure of the Weyl chamber. Figure 8 illustrate this fact in the case
SUp3q.

Proposition 3.17 Let σ be a relative interior of a face of t˚ě0 and let µ be
an admissible element of t˚ě0.
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Figure 8: Shifts of admissible orbits

1. If µ is regular and µ ´ ρK P σ, then µ ´ ρK σ P σ.

2. If µ P σ and µ ` ρK σ is regular, then µ ` ρK σ P ρK ` p$ ě0 X σq.

3. If µ P σ, we have

Qspin
K pKµq “

#
0 if µ ` ρK σ is singular,

πµ`&Kσ if µ ` ρK σ is regular.

Proof. The Þrst point follows from the fact that ρK ´ ρK σ P σ.
We prove the second point. Letµ P σ such that λ “ µ ` ρK σ is regular.

Thus }λ ´ µ}2 “ }ρK µ}2. Then λ being regular and admissible,λ is very
regular. We use Corollary 3.15. The equality}λ ´ µ}2 “ }ρK µ}2 implies
λ ´ ρpλq “ µ ´ ρpµq “ µ ´ pρK ´ ρK σq. Thus ρpλq “ ρK , so λ P t˚ě0. The
elementλ ´ ρK “ µ ´ pρK ´ ρK σq is in Rσ. As it is dominant, it is in σ.

Let us prove the last point. Let qµ be the complex spacek{kµ equipped
with the complex structure Jµ . The equivariant index ( of the Dirac oper-
ator associated to the Spinc-bundle SKµ “ K ˆK µ

p
Ź

qµ b Cµ´&K`&Kσ q is
given by Atiyah-Bott Þxed point formula: for X P t, ( peX q “

ř
wPW {Wµ

w ¨

eixµ,Xy
ś

xα,µyą0 eixα,Xy{2´e´ixα,Xy{2 . HereWµ , the stabilizer of µ in W , is equal to the

Weyl group of the groupK%. Using
ř

wPWσ
�pwqew&Kσ

“
ś

+ą0,x+,%y“0pe+{2´

e´+{2q, we obtain

(3.15) ( peX q “

ř
wPW �pwqei xwpµ`&Kσ q,X y

ś
+ą0 e

i x+,X y{2 ´ e´i x+,X y{2
.
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If µ ` ρK σ is singular, ( is equal to zero. If µ ` ρK σ is regular, thanks
to the second point,µ ` ρK σ is in ρK ` $ ě0, so ( “ πµ`&Kσ .

Remark that ρK σ itself is not dominant, so it is not true that any element
µ ` ρK σ , with µ P σ, is dominant. Thus the integrality conditions on µ are
needed to obtain Proposition 3.17.

Let us prove Proposition 3.8.
We choose a Cartan subgroupT and a positive root system, and let

P “ Kµ be an admissible orbit, with µ P t˚ě0. Let σ be the face (interior)
of t˚ě0 where µ belongs. By Lemma 3.16,spPq “ Kpµ ` ρK σq. Thus the
two Þrst points of Proposition 3.8 as well as the last point are consequence
of Proposition 3.17. From the Atiyah-Bott Þxed point formula, we obtain
Tr pQspin

K pP˚qqpgq “ Tr pQspin
K pPqqpg´1q, so Qspin

K pP˚q “ Qspin
K pPq˚.

3.4 Complex structures

We often will use complex structures and normalized traces on real vector
spaces deÞned by the following procedure.

DeÞnition 3.18 Let N be a real vector space and b : N Ñ N a linear
transformation, such that ´b2 is diagonalizable with non negative eigenval-
ues. Define

‚ the diagonalizable transformation |b| of N by |b| “
?

´b2,
‚ the complex structure Jb “ b|b|´1 on N{ kerpbq
‚ we denote by nTr N |b| “ 1

2Tr N |b|, that is half of the trace of the action
of |b| in the real vector space N . We call nTr N |b| the normalized trace of b.

If N has a Hermitian structure invariant by b, 1
2Tr N |b| is the trace of |b|

considered as a Hermitian matrix. The interest of our notation is that we
do not need complex structures to deÞnenTr N |b|.

If N is an Euclidean space andb a skew-symmetric transformation ofN ,
then ´b2 is diagonalizable with non negative eigenvalues. By deÞnition ofJb,
the transformation b of N determines a complex diagonalizable transforma-
tion of N{ kerpbq, and the list of its complex eigenvalues isria1, . . . , ia( s where
the ak are strictly positive real numbers. We havenTr N |b| “

ř(
k“1 ak ě 0.

Recall our identiÞcation k “ k˚ with the help of a scalar product. When
β P k˚, denote by b the corresponding element ofk. We have deÞned a
complex structure J* on k{k* . On the other hand, b deÞnes an invertible
transformation of k{k* . It can be checked that J* “ Jb. If we choose a
Cartan subalgebra containingb, then nTr k|b| “

ř
+ą0 |xα, by|.
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For further use, we include a lemma. Let us considerkC, the complexiÞed
space ofk. Consider the complex space

Ź
kC.

Lemma 3.19 Let b P k. Let x P R be an eigenvalue for the action of b
i inŹ

kC. Then x ě ´nTr k|b|

Proof. Indeed, consider a Cartan subalgebrat containing b, the system
of roots ' and an order such that xα, by ě 0 for all α ą 0. An eigenvalue
x on

Ź
kC is thus of the form

ř
+PI Ă$ xα, by. Thus we see that the lowest

eigenvalue is´
ř

+ą0xα, by “ ´nTr k|b|.

Assume now that N Ñ M is a real vector bundle equipped with an
action of a compact Lie groupK. For any b P k, and any m P M such that
bM pmq “ 0, we may consider the linear actionLpbq|Nm

which is induced by
b on the ÞbersNm . It is easy to check that pLpbq|Nm

q2 is diagonalizable with
eigenvalues which are negative or equal to zero. We denote by|Lm pbq| “a

´pLpbq|Nm
q
2
.

DeÞnition 3.20 We denote by nTr Nm
|b| “ 1

2Tr |Lm pbq| that is half of the
trace of the real endomorphism |Lm pbq| on Nm . We call nTr Nm

|b| the nor-
malized trace of the action of b on Nm .

For further use, we rewrite Corollary 3.15 as an inequality on normalized
traces.

For any b P k and µ P k˚ Þxed by b, we may consider the action
adpbq : kµ Ñ kµ and the corresponding normalized tracenTr kµ |adpbq| de-
noted simply by nTr kµ |b|.

Proposition 3.21 Let b P k and denote by β the corresponding element in
k˚. Let λ, µ be elements of k˚ fixed by b. Assume that λ is very regular and
that µ ´ λ “ β. Then

}β}2 ě
1
2

nTr kµ |b|.

If the equality holds, then µ belongs to the positive Weyl chamber C$ and

1. λ´ρpλq “ µ´ρpµq, hence λ is admissible if and only if µ is admissible,

2. spKµq “ Kλ.

Proof. Indeed, asλ is Þxed by b, we see thatβ belong to k˚
$. We may

assume thatk˚
$ “ t˚. Thus β,λ and µ “ λ´β belong to t˚. The elementλ is

a very regular element oft˚. Proposition is thus a restatement of Corollary
3.15.
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3.5 Induced Spin c bundles

Let H Ă K be the stabilizer subgroup of some element ink˚. We denote by
h the Lie algebra ofH and we consider the open subseth˚

0 :“ tξ P h˚ |K# Ă

Hu. Equivalently, the element ξ, identiÞed to an element ofh, is such that
the transformation adpξq is invertible on k{h, so it determines a complex
structure on k{h denoted J#. The complex structure J# on k{h determined
by ξ P h˚

0 depends only of the connected componentC of h˚
0 containing ξ.

Thus we denote byJC the corresponding complex structure onq “ k{h, by
ρC P z˚ the element ρK pξq ´ ρH pξq for any ξ P C and by qC the complex
vector spaceq equipped with JC . If C andC 1 are two connected components,
we denote by�C 1

C the ratio of the orientation opJC q and opJC 1q on q.
Consider a compactH-manifold Y and the manifold M “ K ˆH Y .

AssumeM is oriented and equipped with aK-equivariant Spinc-bundle S.
At the level of tangent spaces we have TM |Y » rqs ‘ TY where rqs “ Y ˆq.
We orient the manifold Y through the relation opMq “ opJC qopY q. We
consider the Spinc-bundle SY deÞned by

(3.16) S|Y “

”ľ
qC

ı
b SY .

Here
“Ź

qC
‰

“ Y ˆ
Ź

qC is a Spinc-bundle for the trivial bundle rqs.
This gives a bijection (depending ofC) between theK-equivariant Spinc-

bundles S on M and the H-equivariant Spinc-bundles SY on Y . If the
relation (3.16) holds, we say thatS is the Spinc-bundle induced by SY . In
this Òinduced settingÓ, we have

(3.17) QK pM,Sq “ IndK
H

´ľ
qC b QH pY,SY q

¯
.

See [24].
We end this section by considering the particular case of an induced

manifold M :“ KˆH Hµ whereHµ is an admissibleH-coadjoint orbit. Here
Hµ is equipped with its canonical Spinc-bundle SHµ , and the representation
QH pHµ,SHµ q is simply denoted by Qspin

H pHµq.
The Spinc index on the manifoldM “ KˆH Hµ is equal to the character

IC
µ :“ IndK

H

´ľ
qC b Qspin

H pHµq

¯
.

The following result will be used in Section 5.4.

Proposition 3.22 ‚ If µ ` ρC R h˚
0, then IC

µ “ 0.
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‚ If µ ` ρC P h˚
0, then µ ` ρC is K-admissible, and

IC
µ “ �C

C 1 Qspin
K pKpµ ` ρC qq

where C 1 is the connected component of h˚
0 containing µ ` ρC .

Proof. By deÞnition Qspin
H pHµq “ IndH

Hµ

´ Ź
Jµ

h{hµ b Cµ´&Hpµq
¯

. We

assume Þrst thatµ1 :“ µ ` ρC P h˚
0 : let C 1 be the connected component of

h˚
0 containing µ ` ρC . As Kµ 1 “ Hµ 1 “ Hµ , we have

IC
µ “ IndK

K
µ1

´ ľ
qC b

ľ

J
µ1

h{hµ 1 b Cµ 1´&C´&Hpµ 1q
¯
.

Now we use the fact that the gradedKµ 1-module
Ź

qC is equal to�C
C 1

Ź
qC 1

b

C&C´&1
C

(see Example 2.2). It gives that

IC
µ “ �C

C 1 IndK
K

µ1

´ ľ
qC 1

b
ľ

J
µ1

h{hµ 1 b Cµ 1´&
C1 ´&Hpµ 1q

¯

“ �C
C 1 IndK

K
µ1

´ ľ

J
µ1

k{kµ 1 b Cµ 1´&pµ 1q
¯

“ �C
C 1 Qspin

K pKµ1q.

Assume now that IC
µ ‰ 0. The equivariant index Qspin

H pHµq must be

non zero. Hence we have Qspin
H pHµq “ Qspin

H pH÷µq where ÷µ P µ ` ophµq is an
H-admissible andH-regular element.

Consider the maximal torusT :“ H÷µ , and the Weyl chamberC “ t˚ě0 for
K containing ÷µ. Let JC be the corresponding complex structure onk{t. Let
ρK be the ρ element associated to the choice of Weyl chamber. LetC 1 be
the connected component ofh˚

0 that contains the open facet˚ą0. We check
that ρK “ ρC 1 ` ρH p÷µq.

Like before one has

IC
µ “ IndK

H

´ľ
qC b Qspin

H pH÷µq

¯

“ IndK
T

´ ľ
qC b

ľ

J ÷µ

h{t b C÷µ´&Hp÷µq
¯

“ �C
C 1 IndK

T

´ ľ

JC

k{t b C÷µ`&C´&K

¯
.

We see then that IC
µ ‰ 0 only if λ :“ ÷µ ` ρC “ µ1 ` ρH

µ1 is a K-regular
element.
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Here we have}ρH
µ1 } “ }λ ´ µ1}, and one the other hand by the magical

inequality we must have }λ´µ1} ě }ρK
µ1 } sinceλ is K-regular and admissi-

ble. It forces }ρK
µ1 } to be equal to }ρH

µ1 }, and then Kµ 1 “ Hµ 1 : the element
µ1 “ µ ` ρC belongs toh˚

0.
The proof is completed.

Remark 3.23 This proposition is a particular case of the vanishing theorem
that we will prove later on in Section 4.5.1. Indeed the generic stabilizer of
the action of K on M » K{Hµ is Hµ , and the moment map associated to
the induced bundle is k ÞÑ k ¨µ1. Our vanishing Theorem 4.19 says then that
for QK pM,Sq to be non zero, the subalgebras hµ and kµ 1 have to be equal.

3.6 Slices

We assume here thatM is a K-manifold and that " : M Ñ k˚ is a K-
equivariant map. If O is a coadjoint orbit, a neighborhood of " ´1pOq in
M can be identiÞed with an induced manifold, and the restriction of Spinc-
bundles to a neighborhood of "́ 1pOq can be identiÞed to an induced bundle.
To this aim, let us recall the notion of slice [16].

DeÞnition 3.24 Let M be a K-manifold and m P M with stabilizer sub-
group Km . A submanifold Y Ă M containing m is a slice at m if Y is
Km -invariant, KY is a neighborhood of m, and the map

K ˆK m
Y ÝÑ M, rk, ys ÞÑ ky

is an isomorphism on KY .

Consider the coadjoint action of K on k˚. DeÞneU# to be the connected
component of the open subsetpk˚

#q0 :“ tζ P k˚
# | k- Ă k#u of k˚

# containing ξ.
Then K ˆK ξ

U# Ñ KU# is a di#eomorphism. We callU# the maximal slice
at ξ.

The following construction was used as a fundamental tool in the sym-
plectic setting [11].

Proposition 3.25 Let " : M Ñ k˚ be a K-invariant map. Let ξ P k˚, and
let U# be the maximal slice at ξ.

• Y “ " ´1pU#q is a K#-invariant submanifold of M (perhaps empty).

• KY is an open neighborhood of " ´1pKξq diffeomorphic to K ˆK ξ
Y .
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The manifold Y , when is not empty, is called the slice (ofM ) at ξ P k˚.
Note that Y can be disconnected.

Proof. Let us consider the K#-invariant decompositions k “ k# ‘ q,
k˚ “ k˚

# ‘ q˚: we denoteξ Ñ rξsq˚ the corresponding projection toq˚.
A point ζ is in pk˚

#qo if and only if the map Y P q Ñ Y ζ is an isomorphism
from q to q˚. Thus for any y P Y , the linear map ) y :“ r´sq˚ ˝Ty" : T yM Ñ

q˚ is onto. Indeed, the tangent space toKy projects onto the tangent
space toK" pyq, which contains rq, " pyqs “ q˚. Thus we obtain that Y is a
submanifold with tangent space kerp) yq and furthermore TyM “ TyY ‘q¨y.

The rest of the assertions follow from the fact thatU# is a slice atξ for
the coadjoint action.

4 Computing the multiplicities

4.1 Transversally elliptic operators

In this subsection, we recall the basic deÞnitions from the theory of transver-
sally elliptic symbols (or operators) deÞned by Atiyah and Singer in [1]. We
refer to [4, 22] for more details.

Let M be a compact K-manifold with cotangent bundle T ˚M . Let
p : T˚M Ñ M be the projection. If E is a vector bundle onM , we may
denote still by E the vector bundle p˚E on the cotangent bundle T̊ M . If
E`, E´ are K-equivariant complex vector bundles overM , a K-equivariant
morphism σ P ! pT˚M, hompE`, E´qq is called a symbol on M . For x P M ,
and ν P Tx̊M , thus σpx, νq : Ex̀ Ñ Ex́ is a linear map from Ex̀ to Ex́ .
The subset of all px, νq P T˚M where the map σpx, νq is not invertible is
called the characteristic set of σ, and is denoted by Charpσq. A symbol
is elliptic if its characteristic set is compact. An elliptic symbol σ on M
deÞnes an elementrσs in the equivariant K -theory of T˚M with compact
support, which is denoted by K 0

K pT˚Mq. The index of σ is a virtual Þnite
dimensional representation ofK, that we denote by IndexM

K pσq P RpKq.
Recall the notion of transversally elliptic symbol. Let T ˚

K M be the fol-
lowing K-invariant closed subset of T̊ M

T˚
K M “ tpx, νq P T˚M, xν, X ¨ xy “ 0 for all X P ku .

Its Þber over a point x P M is formed by all the cotangent vectorsν P T˚
xM

which vanish on the tangent space to the orbit ofx under K, in the point
x. A symbol σ is K-transversally elliptic if the restriction of σ to T ˚

K M
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is invertible outside a compact subset of T̊K M (i.e. Charpσq X T˚
K M is

compact).
A K-transversally elliptic symbol σ deÞnes an element ofK 0

K pT˚
K Mq,

and the index of σ deÞnes an element IndexMK pσq of öRpKq deÞned in [1].
We will use the following obvious remark. Letσ P ! pT˚M, hompE`, E´qq

be a transversally elliptic symbol onM .

Lemma 4.1 Assume an element b P K acts trivially on M , and that E˘

are K-equivariant vector bundles on M such that the subbundles rE˘sb fixed
by b are equal to t0u. Then rIndexM

K pσqsK “ 0

Proof. The spacerIndexM
K pσqsK is constructed as the (virtual) subspace of

invariant C8-sections of the bundleE˘ which are solutions of aK-invariant
pseudo-di#erential operator onM with symbol σ. But, as the action of b is
trivial on the basis, and rE˘sb “ t0u, the space ofb-invariant C8-sections
of the bundle E˘ is reduced to 0.

Any elliptic symbol is K-transversally elliptic, hence we have a restriction
map K 0

K pT˚Mq Ñ K 0
K pT˚

K Mq, and a commutative diagram

(4.18) K 0
K pT˚Mq !�

IndexM

K

"�

K 0
K pT˚

K Mq

IndexM

K"�
RpKq !� öRpKq .

Using the excision property, one can easily show that the index map
IndexK : K 0

K pT˚
K Uq Ñ öRpKq is still deÞned whenU is a K-invariant rela-

tively compact open subset of aK-manifold (see [20][section 3.1]).
In the rest of this article, M will be a Riemannian manifold, and we

denote ν P T˚M Ñ ÷ν P TM the corresponding identiÞcation.

4.2 The Witten deformation

In this section M is an oriented K-manifold of even dimension (not neces-
sarily compact). Let " : M Ñ k˚ be a K-equivariant map. Let κ" be the
Kirwan vector field associated to " (see (2.10)). We denote byZ" the set
of zeroes ofκ" (clearly Z" contains the set of Þxed points of the action of
K on M as well as "´1p0q).

DeÞnition 4.2 Let σpM,Sqpm, νq “ cSm
p÷νq : S`

m Ñ S´
m be the symbol of

the Dirac operator attached to the Spinc-bundle S, and let " : M Ñ k˚ be
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an equivariant map. The symbol σpM,S, " q pushed by the vector field κ" is
the symbol defined by

σpM,S, " qpm, νq “ cSm
p÷ν ´ κ" pmqq : S`

m ÝÑ S´
m

for any pm, νq P TM .
Similarly if W Ñ M is a K-equivariant vector bundle, we define

σpM,S b W, " qpm, νq “ σpM,S, " qpm, νq b IdWm
.

Note that σpM,S, " qpm, νq is invertible except if ÷ν “ κ" pmq. If further-
more pm, νq belongs to the subset T̊K M of cotangent vectors orthogonal to
the K-orbits, then ν “ 0 and κ" pmq “ 0. Indeedκ" pmq is tangent to K ¨m
while ÷ν is orthogonal. So we note thatpm, νq P CharpσpM,S, " Sqq X T˚

K M
if and only if ν “ 0 and κ" pmq “ 0.

For any K-invariant open subsetU Ă M such that U XZ" is compact in
M , we see that the restrictionσpM,S, " q|U is a transversally elliptic symbol
on U , and so its equivariant index is a well deÞned element inöRpKq.

Thus we can deÞne the following localized equivariant indices.

DeÞnition 4.3 • A closed invariant subset Z Ă Z" is called a compo-
nent if it is a union of connected components of Z" .

• If Z Ă Z" is a compact component, and W is a K-equivariant vector
bundle over M , we denote by

QK pM,S b W, Z, " q P öRpKq

the equivariant index of σpM,S b W, " q|U where U is an invariant
neighborhood of Z so that U X Z" “ Z.

• If we make the Witten deformation with the map " “ " S , the term
QK pM,S b W, Z, " Sq is denoted simply by QK pM,S b W, Zq.

By deÞnition, Z “ H is a component andQK pM,S b W,H, " q “ 0.
When M is compact it is clear that the classes of the symbolsσpM,S, " q

and σpM,Sq are equal in K 0
K pT˚

K Mq, thus we get the Þrst form of the
localization theorem.

Theorem 4.4 Assume that M is compact. If Z" “ Z1
š

. . .
š

Zp is a
decomposition into disjoint (compact) components, we have the following
equality in öRpKq :

QK pM,Sq “

pÿ

i “1

QK pM,S, Zi , " q
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Remark 4.5 Write " SpZSq “
š

j Oj as a disjoint union of a finite set of
coadjoint orbits. Then we obtain the decomposition

QK pM,Sq “
ÿ

j

QOj

with QO “ QK pM,S, " ´1
S

pOq X ZSq. As in [20], this decomposition is the
main tool of our study. However, in this work, we will need to introduce a
further refinement of this decomposition.

Example 4.6 We return to our basic example (Example 2.12). Let p` “

r1, 0s and p´ “ r0, 1s be the fixed points of the T -action on M “ P1pCq. The
determinant line bundle of Spnq is Ln “ rC´1s b Lb2n`2 where rC´1s is the
trivial line bundle equipped with the representation t´1 on C. We choose the
moment map " n associated to a connection on the determinant bundle (see
more details in Section 6):

" nprz1, z2sq “ pn ` 1q
|z1|2

|z1|2 ` |z2|2
´

1
2
.

Then, for n ě 0, Z “ tp`u Y tp´u Y " ´1
n p0q, thus " npZSq “ t´1

2u Y t0u Y

tn` 1
2u. Remark that ZS is smooth: it has 3 connected components, the two

fixed points, and " ´1
n p0q a circle with free action of T . Then we obtain the

associated decomposition QT pM,Spnqq “ Q´ 1
2

` Q0 ` Q 1
2
with

Q´ 1
2

“ ´

´8ÿ

k“´1

tk , Q0 “

´8ÿ

k“´8
tk , Q 1

2
“ ´

8ÿ

k“n`1

tk .

Example 4.7 Take the product N “ P1pCq ˆ P1pCq, with Spinc bundle
S “ Sp0q b Sp0q, moment map " 0 and we consider the diagonal action of
T with moment map " pm1,m2q “ " 0pm1q ` " 0pm2q. As QT pP1pCq,Sp0qq

is the trivial representation of T , QT pN,Sq is still the trivial representation
of T .

We have " pZSq “ t´1u Y t0u Y t1u. In this case " ´1p˘1q “ tpp˘, p˘qu,
and " ´1p0q is not smooth.

Consider the associated decomposition of QT pN,Sq “ Q´1 ` Q0 ` Q1.
We have

Q´1 “

´2ÿ

k“´8
p´k ´ 1qtk , Q0 “

´8ÿ

k“´8
p|k| ´ 1qtk , Q1 “

8ÿ

k“2

pk ´ 1qtk .

We see that indeed Q´1 ` Q0 ` Q1 “ t0. Figure 9 shows the corresponding
multiplicity functions.
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Figure 9: The graph ofQ´1 ` Q1 and the graph ofQ0

4.3 Some properties of the localized index

In this subsection, we recall the properties of the localized index
QK pM,S, Z, " q that we will use in this article.

4.3.1 Fixed point submanifolds and Spinc-bundles

Let S be aK-equivariant Spinc-bundle over the tangent bundle TM of a K-
manifold M (equipped with an invariant Riemannian metric). The manifold
M is oriented and the Cli#ord bundleS is equipped with its canonicalZ{2Z-
grading. Let b P k be a non-zeroK-invariant element, and consider the
submanifold Mb where the vector ÞeldbM vanishes. We have an orthogonal
decomposition

TM |M b “ N ‘ TMb.

The normal bundle N inherits a Þbrewise linear endomorphismLpbq
which is anti-symmetric relatively to the metric.

DeÞnition 4.8 ‚ We denote by Nb the vector bundle N over Mb equipped
with the complex structure Jb :“ Lpbq|Lpbq|´1.

‚ We take on N the orientation opN q induced by the complex structure
´Jb. On Mb we take the orientation opMbq defined by opN qopMbq “ opMq.

Note that the endomorphism Lpbq : Nb Ñ Nb is C-linear, diagonalizable,
with eigenvalues iθ1

X
, . . . , iθp

X
that depends of the connected componentX

of Mb. For further use, we note the following positivity result which follows
directly from the deÞnition of Jb.

Lemma 4.9 The eigenvalues of the action of 1
i Lpbq on Nb are positive.

If we consider the complex line bundle detpNbq Ñ Mb, we see that1
i Lpbq

acts on the Þbers of detpNbq|X by multiplication by the positive number

nTr Nb|X |b| “

pÿ

j “1

θj
X
.
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Proposition 4.10 Let LS be the determinant line bundle of the Spinc bun-
dle S. There exists a equivariant Spinc-bundle dbpSq on the tangent bundle
TMb with determinant line bundle equal to

(4.19) LdbpSq :“ LS |M b b detpNbq.

Proof. The restriction S|M b is a Spinc-bundle over the tangent bundle
TM |M b “ N ‘ TMb. We denoteNb the vector bundle N with the complex
structure ´Jb. Let

Ź
Nb be the Spinc bundle on N with its canonical

grading : sinceopN q “ op´Jbq we havep
Ź

Nbq˘ “
Ź˘ Nb.

Since
Ź

Nb is a graded Spinc-bundle overN , we know that there exists
an equivariant Spinc bundle dbpSq over the tangent bundle TMb (with its
canonical grading) such that

(4.20) S|M b “
ľ

Nb b dbpSq.

is an isomorphism of graded Cli#ord modules. At the level of determinant
line bundle, we get detpSq|M b “ detpNbqbdetpdbpSqq. Identity (4.19) follows.

Consider the linear actionLpbq|dbpSq of b on the Þbers of the Spinc-bundle
dbpSq Ñ Mb.

Lemma 4.11 We have 1
i Lpbq|dbpSq “ a IddbpSq where

apmq “ x" Spmq, by `
1
2

nTr TmM |b|

is a locally constant function on Mb.

Proof. Thanks to Remark 2.8, we know thatapmq is equal tox" dbpSqpmq, by
where " dbpSq is a moment map attached to the line bundleLdbpSq. Thanks to
(4.19) we see thatx" dbpSqpmq, by “ x" Spmq, by ` 1

2Tr Nb
|b|. But nTr T M |b| “

Tr Nb
|b| as well as andx" Spmq, by are locally constant onMb.

The localization formula of Atiyah-Segal can be expressed in the follow-
ing way (see [24]):

Theorem 4.12 Let b P k be a non-zero K-invariant element and assume
that M is compact. For any complex K-vector bundle W Ñ M , we have the
following equalities in öRpKq :

QK pM,S b Wq “ QK

´
Mb, dbpSq b W|M b b SympNbq

¯
.

Here SympNbq is the symmetric algebra of the complex vector bundle Nb.
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4.3.2 The localization formula over a coadjoint orbit

Let " : M Ñ k˚ be an equivariant map. Letβ P k˚. We also considerβ as an
element of k that we denote by the same symbol. In this section we assume
that Z* “ KpM * X" ´1pβqq is a compact component ofZ" Ă M . The study
of QK pM,S b W, Z* , " q P öRpKq is thus localized in a neighborhood of
" ´1pKβq, an induced manifold. Let us recall the corresponding induction
formula.

The restriction of " to M * is a K* -equivariant map taking value in k˚
* .

The subsetZ 1
* “ M * X" ´1pβq is a compact component ofZ" |

Mβ
“ Z" XM * .

We may then deÞne the localized index

QK β
pM * , d* pSq b W|M β , Z 1

* , " |M β q P öRpK* q

where d* pSq is the graded Spinc-bundle on M * deÞned in Proposition 4.10.
We consider the normal bundleN Ñ M * of M * in M . Recall that N*

denotes the vector bundleN equipped with the complexJ* . The following
formula is proved in [20, 24]:

QK pM,S b W, Z* , " q

“ IndK
K β

´
QK β

pM * , d* pSq b W|M β b SympN* q, Z 1
* , " |M β q b

ľ
pk{k* qC

¯
.

Remark 4.13 When K is abelian, this gives

QK pM,S b W, " ´1pβq X M * , " q

“ QK pM * , d* pSq b W|M β b SympN* q, " ´1pβq X M * , " |M β q

which shows that the Atiyah-Segal localization formula (4.12) still holds for
the Witten deformation.

Thus we obtain the following proposition.

Proposition 4.14 Let S be a K-equivariant Spinc-bundle over M , with its
canonical grading. Let " : M Ñ k˚ be an equivariant map. Let W Ñ M be
an equivariant complex vector bundle. Assume that Z* “ KpM * X " ´1pβqq

is a compact component of Z" Ă M . Then

rQK pM,S b W, Z* , " qs
K

“
”
QK β

pM * , d* pSq b W|M β b SympN* q, Z 1
* , " |M β q b

ľ
pk{k* qC

ıK β

.(4.21)
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This proposition will be used to obtain vanishing results, by studying
the inÞnitesimal action of β on the vector bundled* pSqbW|M β bSympN* q.

The formula (4.21) can be specialized to each connected component of
M * . For a connected componentX Ă M * intersecting " ´1pβq, we deÞne
the compact subset

Z* pX q “ K
`
X X " ´1pβq

˘
Ă Z* .

First we note that QK pM,SbW, Z* , " q is equal to the sum
ř

X
QK pM,Sb

W, Z* pX q, " q parameterized by the connected component ofM * intersecting
" ´1pβq (their are Þnite in number).

We have a localization formula for each termQK pM,S b W, Z* pX q, " q

separately (see [20, 24]) :

rQK pM,S b W, Z* pX q, " qs
K

“(4.22)
”
QK β

pX , d* pSq|X b W|X b SympN* q|X , Z
1
* pX q, " |X q b

ľ
pk{k* qC

ıK β

whereZ 1
* pX q “ X X " ´1pβq Ă Z 1

* .

4.3.3 Induction formula

For the Witten deformation, we proved in [24] the following variation on the
invariance of the index under direct images.

Let H be a closed subgroup ofK, and consider aH-invariant decompo-
sition

k “ h ‘ q.

Let Bq be an open ball inq, centered at 0 andH-invariant. Let N 1 be a
H-manifold, and considerN “ K ˆH pBq ˆ N 1q. Then N 1 is a submanifold
of M , and the normal bundle ofN 1 in N is isomorphic to the trivial bundle
with Þber q‘ q. Let Sq be the Spinc module for q‘ q (we can take

Ź
qC as

realization of Sq). Thus if E is a K-equivariant graded Cli#ord bundle on
N , there exists aH-equivariant graded Cli#ord bundle E 1 on N 1 such that

E |N 1 “ Sq b E 1.

Let " 1 : N 1 Ñ h˚ be a H-equivariant map, and let " : N Ñ k˚ be a
K-equivariant map. We assume that these maps are linked by the following
relations :

(4.23)

$
’&

’%

" |N 1 “ " 1,
" pr1;X,n1sq P h˚ ðñ X “ 0,

p" pr1;X,n1sq, Xq ě 0,
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for pX,n1q P Bq ˆ N 1.
Under these conditions, we see that the critical setsZ" Ă N and Z" 1 Ă

N 1 are related by : Z" “ K ˆH pt0u ˆ Z" 1q.

Proposition 4.15 ([24]) Let Z be a compact component of Z" and Z 1 its
intersection with N 1. Then Z 1 is a compact component of Z" 1 and

QK pN, E , Z, " q “ IndK
H

`
QH pN 1, E 1, Z 1, " 1q

˘
.

This leads to the relation rQK pN, E , Z, " qs
K

“ rQH pN 1, E 1, Z 1, " 1qs
H .

4.4 The function dS

Let M be a compact oriented even dimensionalK-manifold, equipped with
a K-equivariant Spinc bundle S. Let " S be the associated moment map on
M , and κS be the Kirwan vector Þeld. Let ZS be the vanishing set ofκS :

ZS “ tm P M | " Spmq ¨ m “ 0u “
ď

,

M , X " ´1
S

pθq.

We now introduce a function dS : ZS ÝÑ R which will localize our study of
rQK pM,S, ZSqs

K to special componentsZ of ZS .

DeÞnedS : ZS ÝÑ R by the following relation

(4.24) dSpmq “ }θ}2 `
1
2

nTr TmM |θ| ´ nTr k|θ|, with θ “ " Spmq.

Lemma 4.16 • The function dS is a K-invariant locally constant func-
tion on ZS that takes a finite number of values.

• The subsets Zą0
S

“ tdS ą 0u, Z“0
S

“ tdS “ 0u, Ză0
S

“ tdS ă 0u are
components of ZS .

Proof. The K-invariance of dS is immediate.
The image " SpZSq is equal to a Þnite union

Ť
j Oj of coadjoint orbits.

For each coadjoint orbit O “ Kβ, the set ZS X " ´1
S

pOq is equal to a Þnite
disjoint union

Ť
j KpX j X" ´1

S
pβqq wherepX j q are the connected components

of M * intersecting " ´1
S

pβq. Sincem ÞÑ nTr TmM |θ| is well deÞned and locally
constant onM , , the map dS is constant on each componentKpX j X" ´1

S
pβqq.

This proves that dS is locally constant function that takes a Þnite number
of values.

The second point is a direct consequence of the Þrst.

We now prove the following fundamental fact.
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Proposition 4.17 Let Zą0
S

be the component of ZS where dS takes strictly

positive values. We have
“
QK pM,S, Zą0

S
q
‰K

“ 0.

SinceQK pM,Sq “ QK pM,S, Ză0
S

q ` QK pM,S, Z“0
S

q ` QK pM,S, Zą0
S

q

by Theorem 4.4, note Þrst the following immediate corollary.

Corollary 4.18 If dS takes non negative values on ZS , we have

rQK pM,SqsK “ rQK pM,S, Z“0
S qsK .

We now prove Proposition 4.17.
Proof. Consider a coadjoint orbit Kβ contained in " SpZSq. Let X

be the connected component ofM * and let Z 1
* pX q :“ X X " ´1pβq. Let

Z* pX q “ KZ 1
* pX q. Let us show that rQK pM,S, Z* pX qqsK “ 0 if dS is

strictly positive on Z* pX q.
As rQK pM,S, Z* pX qqs

K is equal to

(4.25)
”
QK β

pX , d* pSq|X b SympN* q|X , Z
1
* pX q, " S |X q b

ľ
pk{k* qC

ıK β

by the localization formula (4.22), it is su%cient to prove that the inÞnitesi-
mal action Lpβq on the Þbers of the vector bundlesd* pSq|X bSymj pN* q|X bŹ

pk{k* qC have only strictly positive eigenvalues. We establish this by mi-
norizing the possible eigenvalues : they are sums of eigenvalues on each
factor of the tensor product.

We have

1
i
Lpβq “

$
’&

’%

}β}2 ` 1
2nTr T M |X |β| on d* pSq|X ,

ě 0 on Symj pN* q|X ,

ě ´nTr k|β| on
Ź

pk{k* qC.

In the Þrst equality, we have used Lemma 4.11: the functionm ÞÑ

x" Spmq,βy is constant on X , and asX contains a point projecting on β,
1
i Lpβq|dβpSq|X “ p}β}2 ` 1

2nTr T M |X |β|q IddβpSq|X .
In the second inequality, we used Lemma 4.9, so that the action of1i Lpβq

on the graded piece Symj pN* q is strictly positive for j ą 0 or equal to 0 for
j “ 0.

In the last inequality, we have used Lemma 3.19.
If dS takes a strictly positive value on Z* pX q, we see that 1

i Lpβq ą 0 on
d* pSq|X b Symj pN* q|X b

Ź
pk{k* qC : this forces (4.25) to be equal to zero.
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4.5 The Witten deformation on the product M ö O˚

In this section, M is a compact oriented even dimensionalK-manifold,
equipped with a K-equivariant Spinc bundle S. Let " S be the associated
moment map onM . Our aim is to compute geometrically the multiplicities
of the equivariant index QK pM,Sq.

4.5.1 Vanishing theorems

Let Hk be the set of conjugacy classes of the reductive algebrask#, ξ P k˚.
We denote bySk the set of conjugacy classes of the semi-simple partsrh, hs

of the elementsphq P Hk.
Recall that an orbit P is a phq-ancestor ofO if P belongs to the Dixmier

sheet k˚
phq and spPq “ O. Here spPq is deÞned as follows : ifP “ Kµ with

kµ “ h, then spPq “ Kpµ ` ophqq (see DeÞnition 3.7).

Recall that the map O ÞÑ πO :“ Qspin
K pOq is a bijection between the

regular admissible orbits and pK. If O is a regular admissible orbit, then
O˚ :“ ´O is also admissible andπO˚ “ pπOq˚. If we apply the shifting
trick, we see that the multiplicity of πO in QK pM,Sq is equal to

mO “ rQK pM,Sq b pπOq˚s
K

“ rQK pM ˆ O˚,S b SO˚qs
K .(4.26)

Let pkM q be the generic inÞnitesimal stabilizer of theK-action on M . In
this section, we prove the following vanishing results.

Theorem 4.19 • If prkM , kM sq ‰ prh, hsq for any phq P Hk, then

QK pM,Sq “ 0

for any K-equivariant Spinc-bundle S on M .

• Assume that prkM , kM sq “ prh, hsq for phq P Hk. Then

mO “ 0

if there is no phq-ancestor P to O contained in " SpMq.

We consider the productMˆO˚ equipped with the Spinc-bundleSbSO˚ .
The corresponding moment map is "SbSO ˚ pm, ξq “ " Spmq ` ξ. We use
the simpliÞed notation " O for " SbSO ˚ , κO for the corresponding Kirwan
vector Þeld onM ˆ O˚, ZO :“ tκO “ 0u, and dO for the function dSbSO ˚
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on ZO. Theorem 4.19 will result from a careful analysis of the function
dO : ZO Ñ R that was introduced in Section 4.4. Thanks to Proposition 4.17
and Corollary 4.18, Theorem 4.19 is a direct consequence of the following
theorem.

Theorem 4.20 Let O be a regular admissible orbit.

• The function dO is non negative on ZO.

• If the function dO is not strictly positive, then there exists a unique
phq P Hk such that the following conditions are satisfied:

1. prkM , kM sq “ prh, hsq.

2. the orbit O has an phq-ancestor P contained in " SpMq.

Proof. Let P “ M ˆ O˚ and let us compute the function dO on ZO.
Let m P M and λ P O. The point p “ pm,´λq P ZO Ă P if and only
" Oppq ¨ p “ 0. Let β “ " Oppq. This means that β stabilizes m and λ, and
if µ “ " Spmq P k˚, then β “ µ ´ λ.

We write T pm,´$qP “ TmM ‘ T´$O˚ and, sinceO˚ is a regular orbit,
we havenTr T ´λO

˚ |β| “ nTr k|β|.
We consider aKm -invariant decomposition TmM “ k ¨ m ‘ Em where

k¨m » k{km , we obtain nTr TmM |β| “ nTr Em
|β|`nTr k|β|´nTr km |β|. Thus,

dOppq “ }β}2 `
1
2

nTr T pm,´λqP |β| ´ nTr k|β|

“ }β}2 `
1
2

nTr TmM |β| ´
1
2

nTr k|β|

“ }β}2 `
1
2

nTr Em
|β| ´

1
2

nTr km |β|

ě }β}2 `
1
2

nTr Em
|β| ´

1
2

nTr kµ |β|.(4.27)

In the last inequality, we used km Ă kµ as µ “ " Spmq. By Proposition
3.21, }β}2 ´ 1

2nTr kµ |β| ě 0 when β “ µ ´ λ, as λ is very regular (being
regular and admissible), andβ P kµ X k$. Then the Þrst point follows.

Assume now that there exists a point p “ pm,´λq P ZO such that
dOppq “ 0. It implies then that }β}2 “ 1

2nTr kµ |β| and nTr Em
|β| “ 0. The

Þrst equality implies, thanks to Proposition 3.21, that Kµ is an admissible
orbit such that spKµq “ O. Let us denoteH “ Kµ : the relation spKµq “ O
implies that ´β P ophq Ă rh, hs˚. We write ´β “ ρH . Now we have to
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explain why the condition nTr Em
|ρH | “ 0 implies prkM , kM sq “ prh, hsq.

Since " Spmq “ µ, we have

(4.28) pkM q Ă pkm q Ă phq.

ConsiderY “ " ´1
S

pUµq the H-invariant slice constructed in Proposition 3.25.
The product KY is an invariant neighborhood ofm isomorphic to K ˆH Y .
The subspaceEm can be taken as the subspace TmY Ă TmM . Now the
condition nTr Em

|ρH | “ 0 implies that ρH acts trivially on the connected
component Ym of Y containing m. Elements X P rh, hs such that XYm

“ 0
form an ideal in rh, hs. Since the ideal generated byρH in rh, hs is equal to
rh, hs, we have proved that rh, hs acts trivially on Ym . SinceKYm is an open
subset ofM , we get

(4.29) prh, hsq Ă pkM q.

With (4.28) and (4.29) we get prkM , kM sq “ prh, hsq. Finally we have proven
that if dO vanishes at some pointp, then prkM , kM sq “ prh, hsq for some
phq P Hk, and there exists an admissible orbitKµ Ă k˚

phq X " SpMq such that
spKµq “ O.

4.5.2 Geometric properties

We summarize here some of the geometric properties enjoyed by (M , " “

" S), when QK pM,Sq is not zero.
Let phq P Hk. We choose a representativeh. Let H be the corresponding

group andNK pHq be the normalizer ofH in K. Consider the decomposition
h “ rh, hs ‘ z where z is the center of h. Thus z˚ Ă h˚. Consider the open
set

h˚
0 “ tξ P h˚ | k# Ă hu

of h˚. Let z˚
0 “ h˚

0 X z˚ be the corresponding open subset ofz˚
0.

We Þrst note the following basic proposition.

Proposition 4.21 Let M be a K-manifold such that prkM , kM sq “ prh, hsq

and let " : M Ñ k˚ be an equivariant map. Then

• " pMq Ă Kz˚.

• Assume Y :“ " ´1ph˚
0q non empty, then

a) Y is a submanifold of M invariant by the action of NK pHq, and
rH,Hs acts trivially on Y.
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b) The image " pYq is contained in z˚
0.

c) The open subset KY is diffeomorphic to K ˆNKpH q Y.

Proof. Let us prove the Þrst item. Using ourK-invariant inner product,
we consider " as a map " : M Ñ k. The condition on the inÞnitesimal
stabilizer pkM q gives that M “ KM rH,H s. If m P M rH,H s, the term " pmq

belongs to the Lie algebrag of the centralizer subgroupG :“ ZK prH,Hsq.
But one can easily prove that z is a Cartan subalgebra ofg: hence "pmq is
conjugated to an element ofz. This proves the Þrst item.

If Y is non empty, the proof that it is a submanifold follows the same
line than the proof of Proposition 3.25. The setKY is a non empty open
set in M : so onY we have pkM q “ pkyq on a dense open subsetY 1. The
condition prkM , kM sq “ prh, hsq implies that dim rh, hs “ dimrky , kys on Y 1,
but since ky Ă k" pyq Ă h, we conclude that rh, hs “ rky , kys Ă ky on Y 1 : in
other words rH,Hs acts trivially on Y, and rh, hs “ rky , kys for any y P Y.
Furthermore, if ξ “ " pyq, then rh, hs acts trivially on ξ. Soξ is in the center
of h.

Let us prove that π : K ˆNKpH q Y Ñ KY is one to one. Ify1 “ ky2, we
have ξ1 “ kξ2 with ξi “ " pyi q. As " pY q Ă z˚

0, the stabilizers of ξ1, ξ2 are
both equal to H. It follows that k belongs to the normalizer ofH.

The following theorem results directly from Theorem 4.20 and Lemma
4.21. Indeed, in the case whereQK pM,Sq ‰ t0u, then prkM , kM sq “ prh, hsq

for some phq P Hk. Furthermore, there exists at least a regular admissible
orbit O such that mO is non zero, and consequently there exists orbitP Ă

k˚
phq X " SpMq.

Theorem 4.22 Let M be a K-manifold and let S be an equivariant Spinc-
bundle on M with moment map " S . Assume QK pM,Sq ‰ t0u. Then

• There exists phq P Hk such that prkM , kM sq “ prh, hsq.

• If z is the center of h, then " SpMq Ă Kz˚ and the open set " ´1
S

pKz˚
0q

is non empty.

• The group rH,Hs acts trivially on the submanifold Y “ " ´1
S

pz˚
0q.

In the next sections, we consider a connected componentC of h˚
0. We

consider theH-invariant submanifold YC :“ " ´1
S

pCq of Y : here the open
subsetKYC is di#eomorphic to K ˆH YC .
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We follow here the notations of Section 3.5. We denoteqC the vector
spacek{h equipped with the complex structure JC . There exists a unique
H-equivariant Spinc-bundle SYC

on YC such that

(4.30) S|YC
»

ľ
qC b SYC

.

At the level of determinant line bundles we have detpSYC
q “ detpSq|YC

b

C´2&C
, and the corresponding moment map satisfy the relation "YC

“

" S |YC
´ ρC .

We know already that the subgroup rH,Hs acts trivially on the subman-
ifold YC (see Theorem 4.22). It acts also trivially on the bundleSYC

since
the moment map " YC

takes value in z˚ (see Remark 2.8).

4.5.3 Localization on Z“0
O

Let O be a regular admissible orbit. By Theorem 4.20 and Corollary 4.18,
we know that our object of study

mO “ rQK pM ˆ O˚,S b SO˚qs
K

is equal to
“
QK pM ˆ O˚,S b SO˚ , Z“0

O
, " Oq

‰K .
Let us give a description of the subsetZ“0

O
of ZO Ă M ˆ O˚ where

dO vanishes. We denote byq : M ˆ O˚ Ñ k˚ ‘ k˚ the map given by
qpm, ξq “ p" Spmq,´ξq. If µ belongs to a coadjoint orbitP, and ξ P µ`opkµq,
then P is an ancestor to the orbit O of ξ.

DeÞnition 4.23 Let P be a coadjoint orbit.

• Define the following subset of k˚ ‘ k˚:

RpPq “ tpµ, ξq;µ P P; ξ P µ ` opkµqu.

• Define ZP
O

“ q´1pRpPqq Ă M ˆ O˚.

Proposition 4.24 Assume M is a K-manifold with prkM , kM sq “ prh, hsq.
Let S be a K-equivariant Spinc-bundle over M with moment map " S . Let
O be a regular admissible coadjoint. Then

Z“0
O “

ğ

P

ZP
O

where the disjoint union is over the set of phq-ancestors to O. Furthermore,
for P a phq-ancestor to O, the set ZP

O
is equal to p" ´1

S
pPq ˆ O˚q X Z“0

O
.
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Proof. In the proof of Proposition 4.20, we have seen that, ifdOpm,´λq “

0, then the elementµ “ " Spmq is such that pkµq “ phq and λ “ β ` µ with
β P opkµq. SoKµ is a phq ancestor ofO and qpm,´λq P

Ů
P
ZP
O

. This proves
the Þrst assertion.

Conversely take now pm,´ξq P ZP
O

, deÞneµ “ " Spmq. So Kµ is a
phq ancestor ofO and ξ “ µ ` β with β P opkµq. By K-invariance, we may
assumeµ P z˚

0, som P Y. We haveTmM “ k{km ‘ TmY. So

dOpm,´ξq “ }β}2 ´
1
2

nTr km |β| `
1
2

nTr TmY |β|.

As β P ophq Ă rh, hs acts trivially on Y by Lemma 4.21, we have
dOpm,´ξq “ }ρH }2 ´ 1

2nTr km |ρH |. But since rh, hs Ă km Ă h, and then
1
2nTr km |ρH | “ 1

2nTr h|ρH | “ }ρH }2 : Þnally dOpm,´ξq “ 0.

At this stage we have proved that

(4.31) mO “
ÿ

P

mP
O

where the sum runs over thephq-ancestor ofO and

mP
O “

“
QK pM ˆ O˚,S b SO˚ , ZP

O , " Oq
‰K

.

In the next section we will go into the computation of the terms mP
O

. We
end up this section with the following important fact.

Proposition 4.25 Each individual term mP
O

is independent of the choice
of the moment map " S .

Proof. Let " t
S
, t P r0, 1s be a family of moment maps forS. This gives a

family " t
O

pm, ξq :“ " t
S

pmq ` ξ for S b SO˚ .
Let κt

O
be the Kirwan vector Þeld associated to "t

O
, and let ZOptq :“

tκt
O

“ 0u. We denote simply by σt the symbol σpM ˆ O˚,S b SO˚ , " t
O

q.
For any t P r0, 1s, we consider the quantity QP

O
ptq P öRpKq which is the

equivariant index of σt |Ut
, whereUt is a (small) neighborhood of

ZP
Optq Ă ZOptq

such that Ut X ZOptq “ ZP
O

ptq.
Let us prove that the multiplicity m P

O
ptq “ rQP

O
ptqsK is independent of

t. It is su%cient to prove that t Ñ rQP
O

ptqsK is locally constant : let us
show that it is constant in a neighborhood of 0. We follow the same line of
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proof that the proof of the independence of the connection of the local piece
QK pM,S, " ´1

S
pOq X ZSq of QK pM,Sq in [24].

Let U0 be a neighborhood ofZP
O

p0q such that

(4.32) U0 X ZOp0q “ ZP
Op0q.

The vector Þeldκ0
O

does not vanish onBU0 : there exist � ą 0 so that κt
O

does not vanish onBU0 for t P r0, �s. The family σt |U0 , t P r0, �s is then
an homotopy of transversally elliptic symbols : hence they have the same
equivariant index.

Lemma 4.26 For small t we have

U0 X Z“0
O ptq “ ZP

Optq.

Indeed, by Proposition 4.24, Z“0
O

ptq projects by the Þrst projection " t
S

:
M ˆ O˚ Ñ M Ñ k˚ to a Þnite union of coadjoint orbits (the phq-ancestors
to O) and ZOp0q projects on P. So, for t small, U0 X Z“0

O
ptq is the subset

ZP
O

ptq of Z“0
O

ptq projecting on P.
So, for small t, we have the decompositionU0 X ZOptq “ ZP

O
ptq Y Zt ,

whereZt is a component contained inZą0
O

ptq. Finally, for small t, we have

QP
Op0q “ IndexK pσ0|U0 q

“ IndexK pσt |U0 q

“ QP
Optq ` QK pM ˆ O˚,S b SO˚ , Zt , " t

Oq.

Since rQK pM ˆ O˚,S b SO˚ , Zt , " t
O

qsK “ 0 by Proposition 4.17 the proof
of Proposition 4.25 is completed.

4.5.4 Computation of mP
O

In this section we compute

mP
O :“

“
QK pM ˆ O˚,S b SO˚ , ZP

O , " Oq
‰K

.

Let C be a connected component ofh˚
0 that intersects the orbit P. With

the help of Proposition 4.15, we will reduce the computation of mP
O

to a
similar computation where the group K acting on M is replaced with the
torus AH “ H{rH,Hs acting on the sliceYC .

Let µ P P X C : kµ “ h and µ ´ ρpµq deÞnes a character ofH. Then
ZP
O

is equal toKp" ´1
S

pµq ˆ p´µ ` ophq˚q. Here ophq is the ρ orbit for H, so
ophq “ ophq˚ and Qspin

H pophq˚q is the trivial representation of H.
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Let YC “ " ´1
S

pCq be the slice relative to the connected componentC
(see Section 4.5.2). ThusKYC is an open neighborhood of "́ 1

S
pPq in M

di#eomorphic with K ˆH YC . We see that

ZP
O Ă pK ˆH YC q ˆ O˚ » K ˆH pYC ˆ O˚q .

We consider theH-manifold N 1 :“ YC ˆ ophq˚ and the K-manifold

N “ K ˆH pBq ˆ N 1q “ K ˆH pBq ˆ YC ˆ ophq˚q,

whereBq is a small open ball inq, centered at 0 andH-invariant.
When Bq is small enough, the mappX, ξq ÞÑ exppXqp´µ`ξq, from Bq ˆ

ophq˚ into O˚, deÞnes a di#eomorphism into aH-invariant neighborhood of
the H-orbit ´µ ` ophq˚ in O˚. Hence aK-invariant neighborhood of ZP

O
in

MˆO˚ is di#eomorphic toN . Under this isomorphism, the equivariant map
" O “ " S ` iO˚ deÞnes a map " onN . For k P K,X P Bq, y P YC , ξ P ophq˚,
we have

" prk;X, y, ξsq :“ k p" Spyq ` exppXqp´µ ` ξqq .

It restricts to N 1 as the H-equivariant map " 1py, ξq “ " Spyq ´ µ ` ξ with
value in h˚. Furthermore, if Bq is small enough, "pr1;X, y, ξsq belongs to
h˚ if and only X “ 0. As X P q, we see also thatp" pr1;X, y, ξsq, Xq “

p" Spyq, Xq`pexppXqp´µ`ξq, Xq “ p" Spyq´µ`ξ, Xq “ 0 for all pX, y, ξq P

Bq ˆ YC ˆ ophq˚. Conditions (4.23) are satisÞed. Proposition 4.15 tells us
that

mP
O :“

“
QH pN 1,S 1, Z 1, " 1q

‰H

whereZ 1 :“ " ´1
S

pµq ˆ ophq˚.
Now we have to explain the nature of the Spinc bundle S 1 over N 1 “

YC ˆ ophq˚. Let Sophq˚ be the canonical Spinc-bundle of the orbit ophq˚. Let
SYC

be the Spinc-bundle on YC deÞned by (4.30).

Proposition 4.27 We have S 1 “ SP
YC

bSophq˚ where SP
YC

“ SYC
bC´µ`&pµq

is a Spinc-bundle on YC . The determinant line bundle of SP
YC

is equal to

detpSq|YC
bC´2µ , and the corresponding moment map is " P

YC
:“ " S |YC

´µ.

The subgroup rH,Hs acts trivially on pYC ,SP
YC

q.

Proof. Let λ be an element of theH-orbit OP :“ µ ` ophq. The Spinc

bundle SO˚ on O˚ “ pKλq˚ induces a Spinc bundle S1 over O˚
P

through the
relation SO˚ |O˚

P
»

Ź
qC b S1.
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We can check that S1 is the H-Spinc bundle on O˚
P

“ pHλq˚ » ophq˚

equal to

H ˆHλ

´ ľ

´Jλ

h{h$ b C´$`&p$q
¯

»

´
H ˆHλ

ľ

´Jλ

h{h$

¯
b C´$`&p$q

» Sophq˚ b C´µ`&pµq

sinceλ ´ ρpλq “ µ ´ ρpµq P z˚.
As the Spinc bundleSq is equal to the product

Ź
qC b

Ź
qC (see Example

2.3), we know then that S 1 » SYC
b S1 » SYC

b Sophq˚ b C´µ`&pµq.
The relation detpSP

YC
q “ detpSq|YC

b C´2µ comes from the fact that
detpSYC

q “ detpSq|YC
b C´2&pµq sinceρC “ ρpµq.

We consider now theH-manifold YC equipped with the Spinc-bundle
SP
YC

. Let

(4.33) QH pYC ,SP
YC

, t0uq P öRpHq

be the equivariant index localized on the compact componentt" P
YC

“ 0u “

t" S “ µu Ă YC . Let AH be the torus H{rH,Hs. SincerH,Hs acts trivially
on pYC ,SP

YC
q we may also deÞne the localized indexQAH

pYC ,SP
YC

, t0uq P

öRpAH q.
We can now prove the main result of this section.

Theorem 4.28 The multiplicity mP
O

is equal to

”
QH pYC ,SP

YC
, t0uq

ıH
“

”
QAH

pYC ,SP
YC

, t0uq

ıAH

.

Proof. Let Z 1 :“ " ´1
S

pµq ˆ ophq˚. The character QH pN 1,S 1, Z 1, " 1q P

öRpHq is equal to the equivariant index ofσpN 1,S 1, " 1q|U whereU Ă N 1 is an
invariant open subset such thatU X Z" 1 “ Z 1. For py, ξq P N 1 “ YC ˆ ophq˚

and pv, ηq P T py,#qN 1, the endomorphismσpN 1,SN 1 , " 1q|py,#qpv, ηq is equal to

c1pv ` p" Spyq ´ µ ` ξq ¨ yq b IdS
ophq˚ |ξ ` �1 b c2pη ` p" Spyq ´ µ ` ξq ¨ ξq.

Here c1 acts on SP
YC

|y, c2 acts on Sophq˚ |# and �1 is the canonical grading
operator on SP

YC
|y.

Sinceophq˚ is compact, we can replace the termc2pη`p" Spyq´µ`ξq¨ξq

simply by c2pηq. SincerH,Hs acts trivially on YC , and ξ P rh, hs, the vector
Þeldy ÞÑ p" Spyq´µ`ξq ¨y is equal toy ÞÑ p" Spyq´µq ¨y. Thus our symbol
is homotopic to the symbol

c1pv ` p" Spyq ´ µq ¨ yq b IdSophq|ξ ` �1 b c2pηq.
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This last expression is the product symbol of theH-transversally elliptic
symbol c1pv ` p" Spyq ´ µq ¨ yq on YC and of the elliptic symbol c2pηq on
ophq˚. The equivariant indices multiply under the product (as one is elliptic)
([1],[22]).

Now the H-equivariant index of c2pηq acting on Sophq˚ is the trivial repre-
sentation of H. Thus we obtain our theorem. We have also to remark that

the identity
”
QH pYC ,SP

YC
, t0uq

ıH
“

”
QAH

pYC ,SP
YC

, t0uq

ıAH

follows from

the fact that rH,Hs acts trivially on pYC ,SP
YC

q.

5 Multiplicities and reduced spaces

In this section, we interpret the multiplicity as an equivariant index on a
reduced space.

Let O Ă k˚ be a regular admissible orbit, andphq P Hk so that prh, hsq “

prkM , kM sq. In the previous section, we have proved that the multiplicity of
πO in QK pM,Sq is equal to

mO “
ÿ

P

mP
O

where the sum runs over theK-orbits P which are phq-ancestors ofO. Fur-

thermore, we have proved that mP
O

“

”
QAH

pYC ,SP
YC

, t0uq

ıAH

.
The aim of this section is to prove the following theorem.

Theorem 5.1 The multiplicity mP
O

is equal to the spinc index of the (pos-
sibly singular) reduced space MP :“ " ´1

S
pPq{K.

However, our Þrst task is to give a meaning to a QspinpMPq P Z even if
MP is singular.

5.1 Spin c index on singular reduced spaces

We consider a connected oriented manifoldN , equipped with a Spinc-bundle
S. We assume that a torusG acts on the data pN,Sq. An invariant con-
nexion on the determinant line bundle L “ detpSq deÞnes a moment map
" : N Ñ g˚. We do not assume thatN is compact, but we assume that
the map " is proper 3. For any ξ P g˚, the reduced spaceN# :“ " ´1pξq{G is
compact.

3We will use sometimes a slightly different hypothesis : Φ is proper as a map from N
to an open subset of g˚.
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The purpose of this subsection is to explain how we can deÞne the spinc-
index, QspinpNµq P Z, for any µ in the weight lattice $ of the torus G.

Let gN be the generic inÞnitesimal stabilizer of theG-action on N : the
image ofN under the map " leaves in an a%ne spaceIpNq parallel to gK

N .
If ξ P IpNq is a regular value of " : N Ñ IpNq, the reduced spaceN#

is a compact orbifold (as proved in [24]). We can deÞne Spinc-bundles on
orbifolds, as well as Spinc-indices.

We start with the following basic fact.

Lemma 5.2 For any regular value ξ P IpNq of " : N Ñ IpNq, the orbifold
N# is oriented and equipped with a family of Spinc-bundles Sµ

# parameterized
by µ P $ X IpNq.

Proof. Let GN be the subtorus with Lie algebragN . Let G1 “ G{GN .
The dual of the Lie algebrag1 of G1 is canonically identiÞed with gK

N .
We assume that ξ is a regular value of " : N Ñ IpNq : the Þber

Z “ " ´1pξq is a submanifold equipped with a locally free action ofG1. Let
N# :“ Z{G1 be the corresponding ÒreducedÓ space, and letπ : Z Ñ N# be
the projection map. We can deÞne the tangent (orbi)-bundleTN# to N#.

On Z, we obtain an exact sequence 0ÝÑ TZ ÝÑ TN |Z
d" �
ÝÑ rpg1q˚s Ñ

0, and an orthogonal decomposition TZ “ TG1Z ‘ rg1s where rg1s is the
trivial bundle on Z corresponding to the subspace of TZ formed by the
vector Þelds generated by the inÞnitesimal action ofg1. So TN |Z admits the
decomposition TN |Z » TG1Z ‘ rg1s ‘ rpg1q˚s. We rewrite this as

(5.34) TN |Z » TG1Z ‘ rg1
Cs

with the convention g1 » g1 b iR and pg1q˚ » g1 b R. Note that the bundle
TG1Z is naturally identiÞed with π˚pTN#q.

If we take on g1
C the orientation opiq given by the complex structure,

there exists a unique orientationopN#q on N# such that opNq “ opN#qopiq.

DeÞnition 5.3 Let rS# be the Spinc bundle on the vector bundle TG1Z Ñ Z
such that

S|Z » rS# b r
ľ

g1
Cs.

Here r
Ź

g1
Cs “ Z ˆ

Ź
g1

C is a Spinc-bundle on the bundle rg1
Cs “ Z ˆ g1

C

The Kostant relation shows that for any X P gN , the elementeX acts on
the Þbers of rS# as a multiplication by ei x.,X y whereν is any element ofIpNq.
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Hence, for anyµ P $ X IpNq, the action of GN on the tensor rS# b rC´µ s is
trivial. We can then deÞne a Spinc-bundle Sµ

# on TN# by the relation

rS# b rC´µ s “ π˚
´
Sµ

#

¯
.

The proof of the following theorem is given in the next subsection.

Theorem 5.4 For any µ P IpNqX$ , consider the compact oriented orbifold
Nµ`" associated to a generic4 element � P gK

N . Then the index

QpNµ`" ,Sµ
µ`"q

is independent of the choice of a generic and small enough �.

Thanks to the previous Theorem, one deÞnes the spinc index of singular
reduced spaces as follows.

DeÞnition 5.5 If µ P $ , the number QspinpNµq is defined by the following
dichotomy

QspinpNµq “

$
’&

’%

0 if µ R IpNq,

QpNµ`" ,Sµ
µ`"q if µ P IpNq and � P gK

N is generic

and small enough.

The invariant Q spinpNµq P Z vanishes ifµ does not belongs to the relative
interior of " pNq in the a%ne spaceIpNq. It is due to the fact that we can
then approachµ by elementsµ ` � that are not in the image " pNq.

Let us consider the particular case whereµ P IpNq X $ is a regular value
of " : N Ñ IpNq such that the reduced spaceNµ is reduced to a point. Let
mo P " ´1pµq, and let ! Ă G1 be the stabilizer subgroup ofmo (! is Þnite).
In this case (5.34) becomes Tmo

N » g1
C, and opNµq is the quotient between

the orientation of N and those ofg1
C. At the level of graded Spinc-bundles

we have
Smo

» opNµq
ľ

g1
C b L1{2

mo

where L1{2
mo

is a one dimensional representation of ! such that
pL1{2

mo
qb2 “ Lmo

. In this case DeÞnition 5.5 gives that

(5.35) QspinpNµq “ opNµq dim
”
L1{2

mo
b C´µ

ı%
P t´1, 0, 1u.

4So that µ ` � is a regular value of Φ : N Ñ IpNq.
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5.2 Proof of Theorem 5.4

In this subsection we consider a Þxedµ P IpNq X $. For any � P gpNqK, we
consider the moment map "" “ " ´ µ ´ �.

We start with the fundamental Lemma

Lemma 5.6 The map � ÞÑ rQGpN,S, " ´1
" p0q, " "q b C´µ sG is constant in a

neighborhood of 0.

Proof. Changing S to S b rC´µ s, we might as well takeµ “ 0.
Let r ą 0 be smallest non-zero critical value of}" }2, and let U :“

" ´1ptξ | }ξ} ă r{2uq. Using Lemma 2.9, we haveU X tκ0 “ 0u “ " ´1p0q.
We describe nowtκ" “ 0u X U using a parametrization similar to those

introduced in [19][Section 6].
Let gi , i P I be the Þnite collection of inÞnitesimal stabilizers for the

G-action on the compact setU . Let D be the subset of the collection of
subspacesgK

i of g˚ such that " ´1p0q X Ngi ‰ H.
Note that D is reduced to IpNq if 0 is regular value of " : N Ñ IpNq.

If ' “ gK
i belongs toD, and � P IpNq, write the orthogonal decomposition

� “ �$ ` β$ with �$ P ', and β$ P gi . Let

B" “ tβ$ “ � ´ �$ , ' P Du

the set of β so obtained.

Figure 10: The point � and its projections �$

We denote by Z" the zero set of the vector Þeldκ" associated to "" .
Thus, if � is su%ciently small (}�} ă r{2),

(5.36) Z" X U “
ď

* PD�

N * X " ´1
" pβq.
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With (5.36) in hands, we see easily thatt P r0, 1s ÞÑ σpN,S, " t" q|U is an
homotopy of transversally elliptic symbols onU . Hence they have the same
index

QGpU ,S, " ´1p0q, " q “ QGpU ,S, Z" X U , " "q

“
ÿ

* PB�

QGpN,S, " ´1
" pβq X N * , " "q.

The lemma will be proved if we check thatrQGpN,S, " ´1
" pβqXN * , " "qsG “ 0

for any non-zeroβ P B" .
If β$ P B" and n P " ´1

" pβ$ qXN * ! , " pnq “ β$ `� “ �$ . Sox" pnq,β$ y “

x�$ ,β$ y “ 0. So the inÞnitesimal action,Lpβq, on the Þber of the vector
bundle Sn is equal to 0.

The Atiyah-Segal localization formula for the Witten deformation (Re-
mark 4.13) gives

QGpN,S, " ´1
" pβq X N * , " "q “ QGpN * , d* pSq b SympV* q, " ´1

" pβq, " "q

“
ÿ

XĂN β

QGpX , d* pSq|X b SympV* q|X , " ´1
" pβq, " "q

where V* Ñ N * is the normal bundle of N * in N and the sum runs over
the connected componentsX of N * that intersects " ´1

" pβq.
Let us look to the inÞnitesimal action of β, denotedLpβq, on the Þbers

of the vector bundle d* pSq|X b SympN* q|X . This action can be checked at a
point n P " ´1

" pβq X N * .As the action of β on the Þber of the vector bundle
Sn is equal to 0, we obtain

1
i
Lpβq “

#
1
2Tr T N |X p|β|q on d* pSq|X ,

ě 0 on SympN* q|X .

So we have checked that1i Lpβq ě 1
2Tr T N |X p|β|q on d* pSq|X b SympN* q|X .

Now we remark that β does not acts trivially on N , sinceβ belongs to
the direction of the subspaceIpNq “ gK

N : this forces 1
2Tr T N |X p|β|q to be

strictly positive. Finally we see that 1
i Lpβq ą 0 on d* pSq|X b SympN* q|X ,

and then
“
QGpX , d* pSq|X b SympV* q|X , " ´1

" pβq, " "q
‰G

“ 0.

if β ‰ 0. The Lemma 5.6 is proved.

The proof of Theorem 5.4 will be completed with the following
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Lemma 5.7 If µ ` � is a regular value of " : N Ñ IpNq, the invariant
rQGpN,SN , " ´1

" p0q, " "q b C´µ sG is equal to the index QpNµ`" ,Sµ
µ`"q.

We assume thatµ ` � is a regular value of " : N Ñ IpNq : the Þber
Z “ " ´1pµ ` �q is a submanifold equipped with a locally free action of
G1 “ G{GN . Let Nµ`" :“ Z{G1 be the corresponding ÒreducedÓ space, and
let π : Z Ñ Nµ`" be the projection map. We have the decomposition

(5.37) TN |Z » π˚pTNµ`"q ‘ rg1
Cs.

For any ν P $ X IpNq, S .
µ`" is a the Spinc bundle on Nµ`" deÞned by the

relation
SN |Z b C´. » π˚ `

S .
µ`"

˘
b r

ľ
g1

Cs.

The following result is proved in [24].

Proposition 5.8 We have the following equality in öRpGq

QGpN,SN , " ´1
" p0q, " "q “

ÿ

. P! XI pN q
QpNµ`" ,S .

µ`"q C. .

In particular rQGpN,SN , " ´1
" p0q, " "q b C´µ sG is equal to QpNµ`" ,Sµ

µ`"q.

5.3 rQ,Rs Ò0

We come back to the setting of a compactK-manifold M , oriented and of
even dimension, that is equipped with aK-Spinc bundle S. Let LS be its
determinant bundle, and let " S Ñ k˚ be the moment map that is attached
to an invariant connection on LS . We assume that there existsphq P Hk such
that prkM , kM sq “ prh, hsq. Let z be the center ofh.

We consider an admissible elementµ P z˚ such that Kµ “ H : the
coadjoint orbit P :“ Kµ is admissible and contained in the Dixmier sheet
k˚

phq. Let

MP :“ " ´1
S

pPq{K

In order to deÞne QspinpMPq P Z we proceed as follows.

Let h˚
0 :“ tξ P h˚ |K# Ă Hu and let Y :“ " ´1

S
ph˚

0q. We recall that the
map ξ ÞÑ ρpξq is locally constant on h˚

0. Let us Þx a connected component
C of h˚

0 : we denoteρC “ ρpξq for any ξ P C. We considerYC “ " ´1
S

pCq

that is a H-submanifold of M equipped with a H-Spinc bundle SYC
: the

associated moment map is "YC
:“ " S |YC

´ ρC .
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For any admissible elementµ P C X z˚ the element

÷µ :“ µ ´ ρpµq “ µ ´ ρC

belongs to the weight lattice $ of the torus AH :“ H{rH,Hs, and the
reduced spaceMKµ is equal to

pYC q÷µ :“ t" YC
“ ÷µu{AH .

By deÞnition, we take QspinpMKµ q :“ QspinppYC q÷µq where the last term
is computed as explained in the previous section. More precisely, let us
decomposeYC into its connected componentsY1, . . . ,Yr . For each j, let
zj Ă z be the generic inÞnitesimal stabilizer relative to theAH -action on Yj .
Then we take

QspinpMPq “ QspinpMKµ q :“
ÿ

j

Qspin `
pYj q÷µ`"j

˘

where �j P zK
j are generic and small enough.

With this deÞnition of quantization of reduced spaces QspinpMPq, we
obtain the main theorem of this article, inspired by the rQ,Rs “ 0 theorem
of Meinrenken-Sjamaar.

Let M be aK-manifold and S be aK-equivariant Spinc-bundle overM .
Let phq P Hk such that prkM , kM sq “ prh, hsq, and consider the setApphqq of
admissible orbits contained in the Dixmier sheetk˚

phq.

Theorem 5.9

(5.38) QK pM,Sq “
ÿ

PPApphqq
QspinpMPqQspin

K pPq.

We end this section by giving yet another criterium for the vanishing of
Qspin

K pM,Sq.
Consider the map " S : M Ñ k˚. At each point m P M , the di#erential

dm " S gives a mapTmM Ñ k˚. Let kK
m Ă k˚. From the Kostant relations,

we see thatdm " S take value in kK
m .

Proposition 5.10 If QK pM,Sq ‰ 0, then there exists m P MzMK such
that Imagepdm " Sq “ kK

m .
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Proof. If we consider the decomposition of the sliceYC “
Ť

Yj in connected
components, for QK pM,Sq ‰ 0, then for some j, " pYj q has non empty
interior in zK

j . Herezj is the inÞnitesimal stabilizer of the action ofH{rH,Hs

on Yj . Thus zj is equal to km Ă h for genericm P Yj . So there exists a point
m P Yj such that the di#erential of " S |Y is surjective on zK

j Ă h˚. Now if
we considerKYj Ă M , then Imagepdm " Sq “ h˚ ‘ zK

j . This is exactly kK
m .

When the action of K is abelian, we can always reduce ourselves to
an e#ective action with kM “ t0u. Then the support of decomposition of
QK pM,Sq is contained in the interior of " SpMq X $. If this set has no
interior point, then QK pM,Sq “ 0. This small remark implies the well-
known Atiyah-Hirzebruch vanishing theorem in the spin case [2], as well as
the variant of Hattori [13].

We also note another corollary.

Corollary 5.11 If the two form &S is exact, and the K-action on M is
non-trivial then QK pM,Sq “ 0.

It is due to the fact that if & S “ dα, by modifying the connection onLS by α,
our moment map is constant. So if the action is non trivial,QK pM,Sq “ 0.

5.4 rQ,Rs Ò0 on induced manifolds

Let H Ă K be the stabilizer subgroup of some element ink˚. We adopt the
notations of Section 3.5. LetC be a choice of a connected component ofh˚

0.
Assume thatY is a compactH-manifold, and consider the manifoldM “

K ˆH Y . Assume that M is oriented and equipped with aK-equivariant
Spinc-bundle S. We consider the Spinc-bundle SY on Y such that S|Y “Ź

qC b SY . The equivariant index QK pM,Sq veriÞes the equation

(5.39) QK pM,Sq “ IndK
H

´ ľ
qC b QH pY,SY q

¯
.

The aim of this section is to explain how ourrQ,Rs “ 0 theorem matches
with the induction formula (5.39) when we apply it to both indices QK pM,Sq

and QH pY,SY q.

Let LS be the determinant line bundle of the Spinc-bundle S. As LS »

K ˆH LS |Y we can choose an equivariant connection onLS such that the
corresponding moment map "S : M Ñ k˚, when restricted to Y , takes value
in h˚. The determinant line bundle LY of the Spinc-bundle SY is equal to
LS |Y b C´2&C

, and for the moment map " Y , we have "Y “ " S |Y ´ ρC .
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We can assume that there exists a Levi subalgebral Ă h such that the
conjugacy class of generic stabilizerprhY , hY sq “ prkM , kM sq is equal toprl, lsq,
otherwiseQK pM,Sq “ QH pY,SY q “ 0. We noteAkpplqq (resp. Ahpplqq) the
set of K-admissible (resp. H-admissible) orbits belonging to the Dixmier
sheetk˚

pplqq (resp. h˚
pplqq).

For any orbit Hξ Ă h˚, we deÞne theK-orbit t C pHξq :“ KpHξ ` ρC q “

Kpξ`ρC q. Let AhpplqqC be the subset ofAhpplqq formed by the H-coadjoint
orbit P 1 such that P 1 ` ρC is contained in h˚

0. Let h˚
plq Ă h˚ be the Dixmier

sheet of coadjoint orbitsHξ with H# conjugate to L.
We have the following basic fact.

Lemma 5.12 ‚ If P 1 P AhpplqqC , then t C pP 1q belongs to Akpplqq.
‚ For any P P Akpplqq we have

(5.40) P X h˚
plq “ P X h˚

plq “
ž

P 1
pP 1 ` ρC q

where the finite union runs over the orbits P 1 P AhpplqqC such that t C pP 1q “

P.

Proof. Let P 1 P AhpplqqC . Then P 1 “ Hµ with a H-admissible element
µ P h˚ such that Kµ “ L and µ ` ρC P h˚

0. We have Kµ`&C
“ Hµ`&C

“

Hµ “ L and

(5.41) µ ` ρC ´ ρK pµ ` ρC q “ µ ´ ρH pµq ` ρC ´ ρC 1

whereC 1 is the connected compoent ofh˚
0 containing a ` ρC . As ρC ´ ρC 1

belongs to the weight lattice we see thatµ ` ρC is K-admissible. The Þrst
point is proved.

The inclusions
š

t CpP 1q“P
pP 1 ` ρC q Ă P X h˚

plq Ă P X h˚
plq are obvious.

Consider now aH-orbit T contained in P X h˚
plq. We haveT “ Hλ whereλ

is K-admissible. Asλ P h˚
plq the stabilizer H$ is H-conjugated to a subgroup

containing L. In the other hand, the stabilizer sugroup K$ is K-conjugate
to L. If we compare the dimension of the connectd subgroupsH$ and K$

we see thatK$ “ H$ and then Hλ P P Xh˚
plq : the elementλ can be choosen

so that K$ “ H$ “ L.
We considerµ “ λ ´ ρC so that t C pHµq “ P. We see Þrst thatHµ “

H$ “ L and (5.41) shows that µ is H-admissible. We have checked that
Hµ P Ahpplqq and T “ Hµ`ρC Ă P Xh˚

plq. The second point is also proved.
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For the H-manifold Y , our rQ,Rs “ 0 Theorem says thatQH pY,SY q is
equal to

ř
P 1PAhpplqq QspinpYP 1qQspin

H pP 1q. If we apply the induction formula
proved in Proposition 3.22, we get that

QK pM,Sq “
ÿ

P 1PAhpplqq
QspinpYP 1qIndK

H

´ ľ
qC b Qspin

H pP 1q
¯

“
ÿ

P 1PAhpplqqC
�P

1
C QspinpYP 1qQspin

K pt C pP 1qq

“
ÿ

PPAkpplqq
mPQspin

K pPq

with m P “
ř

t CpP 1q“P
�P

1
C QspinpYP 1q. Here �P

1
C is the sign �C 1

C where C 1 is
the connected component ofh˚

0 that contains P 1 ` ρC (see Section 3.5).
Finally, we recover the rQ,Rs “ 0 Theorem for theK-manifold M with

the help of the following

Proposition 5.13 For any P P Akpplqq, the term mP is equal to QspinpMPq.

Proof. Identity (5.40) and the fact that the image of " Y is contained
in h˚

plq gives automatically that

" ´1
S

pPq “
ž

t CpP 1q“P

K ˆH " ´1
Y pP 1q.

Hence the reduced spaceMP :“ " ´1
S

pPq{K decomposes as a disjoint sumš
t CpP 1q“P

MP 1
P

where MP 1
P

“ pK ˆH " ´1
Y pP 1qq{K is equal (as a set) to

YP 1 “ " ´1
Y pP 1q{H.

Let P 1 P Akpplqq such that t C pP 1q “ P. The proposition will be proved
if we show that QspinpMP 1

P
q “ �P

1
C QspinpYP 1q.

Consider µ such that P 1 “ Hµ and Hµ “ L. Take µ1 “ µ ` ρC : we
have P “ Kµ1 and Kµ 1 “ L. Let B Ă l˚ be a small ball centered atµ, and
consider the sliceY :“ " ´1

Y pBq : the set HY Ă Y is a H-invariant open
neighborhood of "´1

Y pP 1q di#eomorphic to HˆL Y. Consider theK-invariant
open subset

MP 1
:“ K ˆH

´
HY

¯
Ă M

We note that MP 1
» K ˆL Y, and the reduction of MP 1

, equipped with the
moment map " S |M P 1 , relatively to P is equal toMP 1

P
.

By deÞnition, the quantity Q spinpMP 1
P

q is equal to

rQL pY,SY b C´µ 1`&Kpµ 1q, t0uqsL
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whereSY is the Spinc-bundle deÞned by relationS|Y “
Ź

J
µ1 k{l b SY .

On the other hand, the quantity Q spinpYP 1q is equal to

rQL pY,S 1
Y b C´µ`&Hpµq, t0uqsL

whereS 1
Y

is the Spinc-bundle deÞned by relationSY |Y “
Ź

Jµ
l{hbS 1

Y
. Now

if we use the fact that S|Y “
Ź

JC
k{h b SY , we can check that

SY b C´µ 1`&Kpµ 1q » �C 1
C S 1

Y b C´µ`&Hpµq

at the level of L-equivariant graded Spinc-bundles. The proof of the relation
QspinpMP 1

P
q “ �P

1
C QspinpYP 1q then follows.

6 Examples

6.1 P1pCq

We consider the simplest case of the theory. LetP1 :“ P1pCq be the
projective space of (complex) dimension one. Consider the (ample) line
bundle L Ñ P1, dual of the tautological bundle. It is obtained as quo-
tient of the trivial line bundle C2ztp0, 0qu ˆ C on C2ztp0, 0qu by the action
u ¨ pz1, z2, zq “ puz1, uz2, uzq of C˚. We consider the action ofT “ S1 on
L Ñ P1 deÞned byt ¨ rz1, z2, zs “ rt´1z1, z2, zs.

Let Spnq be the Spinc-bundle
Ź

C TP1bLbn . The character Qspin
T pM,Spnqq

is equal to H0pP1,Opnqq ´ H1pP1,Opnqq where Opnq is the sheaf of holo-
morphic sections ofLbn . Note that the holomorphic line bundle Lbn is not
ample if n ď 0. We have

• Qspin
T pM,Spnqq “ ´

ř´1
k“n`1 t

k when n ď ´2,

• Qspin
T pM,Sp´1qq “ 0,

• Qspin
T pM,Spnqq “

řn
k“0 t

k when n ě 0.

The determinant line bundle of Spnq is Ln “ rC´1sbLb2n`2 whererC´1s

is the trivial line bundle equipped with the representation t´1 on C.
Remark that P1 is homogeneous underUp2q, so there exists a unique

Up2q-invariant connection on Ln . The corresponding moment map "Spnq is
such that

(6.42) " Spnqprz1, z2sq “ pn ` 1q
|z1|2

|z1|2 ` |z2|2
´

1
2
.

The image In “ " SpnqpMq is
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• the interval r´1
2 , n ` 1

2s when n ě 0,

• a point t´1
2u when n “ ´1,

• the interval rn ` 1
2 ,´1

2s when n ď ´2,

It is in agreement with our theorem. Indeed all characters occurring in
Qspin

T pM,Spnqq are the integral points in the relative interior of In , and all
reduced spaces are points.

If we consider simply the action of T on P1, the choice of connec-
tion may vary. In fact, given any smooth function f on R, we can mod-
ify the connection such that " Spnqprz1, z2sq “ ´1

2 ` pn ` 1q
|z1 |2

|z1 |2`|z2 |2 `

fp
|z1 |2

|z1 |2`|z2 |2 q
|z1 |2

|z1 |2`|z2 |2 p1 ´
|z1 |2

|z1 |2`|z2 |2 q. Let & L be the curvature of L, then
the Duistermaat-Heckman measurep" Spnqq˚&L is independent of the choice
of the connection and is equal to the characteristic function ofIn .

Take for example

" Spnqprz1, z2sq “ ´
1
2

`pn`1q
|z1|2

|z1|2 ` |z2|2
´15

|z1|2

|z1|2 ` |z2|2
p1´

|z1|2

|z1|2 ` |z2|2
q.

Figure 11 is the graph on "Spnq for n “ 4 in terms of x “
|z1 |2

|z1 |2`|z2 |2
varying between 0 and 1. We see that the image of "Sp4q is the interval
r´13

6 , 9
2 , s. But the image of the signed measure is stillr´1

2 ,
9
2s. Above the

integral points in r´13
6 ,´1

2s, the reduced space is not connected, it consists
of two points giving opposite contributions to the index. So our theorem
holds.

Figure 11: The graph of " L

65



6.2 The Hirzebruch surface

We considerM to be the Hirzebruch surface. RepresentM as the quotient
of U “ C2 ´ tp0, 0qu ˆ C2 ´ tp0, 0qu by the free action of C˚ ˆ C˚ acting by

pu, vq ¨ pz1, z2, z3, z4q “ puz1, uz2, uvz3, vz4q

and we denote byrz1, z2, z3, z4s P M the equivalence class ofpz1, z2, z3, z4q.
The map π : rz1, z2, z3, z4s Ñ rz1, z2s is a Þbration ofM on P1pCq with Þber
P1pCq.

Consider the line bundleLpn1, n2q obtained as quotient of the trivial line
bundle U ˆ C on U by the action

pu, vq ¨ pz1, z2, z3, z4, zq “ puz1, uz2, uvz3, vz4, u
n1vn2zq

for pu, vq P C˚ ˆ C˚. The line bundle Lpn1, n2q is ample if and only if
n1 ą n2 ą 0.

We have a canonical action of the groupK :“ Up2q on M : g ¨ rZ1, Z2s “

rgZ1, Z2s for Z1, Z2 P C2 ´ tp0, 0qu and the line bundleLpn1, n2q with action
g ¨ rZ1, Z2, zs “ rgZ1, Z2, zs is K-equivariant.

We are interested in the (virtual) K-module

H0pM,Opn1, n2qq ´ H1pM,Opn1, n2qq ` H2pM,Opn1, n2qq

whereOpn1, n2q be the sheaf of holomorphic sections ofLpn1, n2q.
In this case, it is in fact possible to compute directly individual cohomol-

ogy groupsH i pM,Opn1, n2qq. However, we will describe here only results
on the alternate sum and relate them to the moment map.

Let T “ Up1q ˆ Up1q be the maximal torus of K. The set Y :“
trz1, z2, z3, z4s P M | z1 “ 0u is a T -invariant complex submanifold of M
(with trivial action of pt1, 1q). The map

Y Ñ P1pCq, r0, z2, z3, z4s ÞÑ rpz2q´1z3, z4s

is a T -equivariant isomorphism and the map pg, yq P K ˆ Y ÞÑ g ¨ y P M
factorizes through an isomorphismK ˆT Y » M . Thus M is an induced
manifold.

For any pa, bq P Z2, we denote Ca,b the 1-dimensional representation
of T associated to the characterpt1, t2q ÞÑ ta1t

b
2. We denote by e˚

1, e
˚
2 the

canonical bases oft˚ » R2. The Weyl chamber is t˚ě0 “ txe˚
1 ` ye˚

2, x ě yu.
The elementse˚

1, e
˚
2 are conjugated by the Weyl group.

The line bundle Lpn1, n2q, when restricted to Y » P1pCq, is isomorphic
to Lbn2 b rC0,´n1 s.
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We considerL' “ Lp3, 2q the line bundle obtained from the reduction
of the trivial line bundle

Ź4 C4 with natural action of C˚ ˆ C˚. We denote
SM :“

Ź
C TM (resp. SY :“

Ź
C TY ) the Spinc-bundle associated to the

complex structure onM (resp. Y ).

We denote by ϕ : Y Ñ r0, 1s the map deÞned byϕpyq “
|a1 |2

|a1 |2`|a2 |2 if
y » ra1, a2s.

Proposition 6.1 ‚ Let Spn1, n2q be the spin bundle SM bLpn1, n2q on M .
Its determinant line bundle is

Ln1,n2 “ rCdet s b L' b Lp2n1, 2n2q

where rCdet s Ñ M is the trivial Up2q-equivariant line bundle associated to
the character det : Up2q Ñ C˚.

‚ There exists a connection on Ln1,n2 such that the corresponding mo-
ment map " n1,n2 : K ˆT Y Ñ k˚ is defined by

" n1,n2 prk, ysq “

´
´ pn1 `

3
2

q ` pn2 ` 1qϕpyq

¯
k ¨ e˚

2 `
1
2

pe˚
1 ` e˚

2q.

Proof. For the second point, we construct aUp2q-invariant connection
on Ln1,n2 by choosing theT -invariant connection on pLn1,n2 q|Y having mo-
ment map

`
´pn1 ` 3

2q ` pn2 ` 1qϕpyq
˘
e˚

2 ` 1
2pe˚

1 ` e˚
2q under the T -action

(see Equation (6.42)).

From Proposition 6.1, it is not di%cult to describe the ÒKirwan setÓ
' pn1, n2q “ Imagep" n1,n2 q X t˚ě0 for all cases ofn1, n2. It depends of the
signs ofn1 ` 3

2 , n2 ` 1, n1 ´ n2 ` 1
2, that is, as we are working with integers,

the signs ofn1 ` 1, n2 ` 1 and n1 ´ n2. We concentrate in the case where
n1 ` 1 ě 0, n2 ` 1 ě 0 (other cases are similarly treated). Then, we have
two cases:

‚ If n1 ě n2, then the Kirwan set ' pn1, n2q is the interval

rpn1 ´ n2q `
1
2
, n1 `

3
2

sp´e˚
2q `

1
2

pe˚
1 ` e˚

2q.

‚ If n2 ą n1, then the Kirwan set ' pn1, n2q is the union of the intervals

r0, n2 ´ n1 ´
1
2

se˚
1 `

1
2

pe˚
1 ` e˚

2q

and
r0, n1 `

3
2

sp´e˚
2q `

1
2

pe˚
1 ` e˚

2q.
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If n1 ě n2 ě 0 the curvature of the corresponding connection onLn1,n2 “

Lp2n1 ` 3, 2n2 ` 2q (which is an ample line bundle) is non degenerate, thus
the image is a convex subset oft˚ě0 (in agreement with Kirwan convexity
theorem) while for n2 ą n1 the image set is not convex.

The character QK pn1, n2q :“ QK pM,Spn1, n2qq is equal to the (virtual)
K-moduleH0pM,Opn1, n2qq ´H1pM,Opn1, n2qq `H2pM,Opn1, n2qq where
Opn1, n2q is the sheaf of holomorphic sections ofLpn1, n2q.

Let $ ě0 “ tpλ1,λ2q;λ1 ě λ2u be the set of dominant weights forUp2q.
We index the representations ofUp2q by ρ ` $ ě0. Here ρ “ p1

2 ,
´1
2 q and

λ1,λ2 are integers. We then have

πp 1
2 ,´k´ 1

2 q “ Sk

the space of complex polynomials onC2 homogeneous of degreek.
If n2 ě 0, we know thatQT pY,SY bLbn2 q “

řn2
k“0 t

k
2. From the induction

formula (3.17) (or direct computation via Cech cohomology !!) we obtain
‚ If n1 ě n2, then

QK pn1, n2q “

n1ÿ

k“n1´n2

πp 1
2 ,´k´ 1

2 q.

‚ If n2 ą n1, then

QK pn1, n2q “

n1ÿ

k“0

πp 1
2 ,´k´ 1

2 q ´

n2´n1´2ÿ

k“0

πpk` 3
2 , 1

2 q.

Let us checked how our theorem works in these cases. First, we notice
that we are in a multiplicity free case : all the non-empty reduced spaces
are points.

‚ Consider the case wheren1 ě n2. We see that the parameterp1
2 ,´k´ 1

2q

belongs to the relative interior of the interval ' pn1, n2q. In particular for
b “ p0, 0q, the unique point in the relative interior of the interval ' p0, 0q is
ρ. This is in agreement to the fact that the representation QK p0, 0q is the
trivial representation of K.

‚ Consider the case wheren2 ą n1. We see that the parameterp1
2 ,´k´ 1

2q

belongs to the relative interior of r´n1 ´ 3
2 , 0se˚

2 ` 1
2pe˚

1 ` e˚
2q if and only if

k ď n1. Similarly, the parameter pk ` 3
2 ,

1
2q belongs to the relative interior

of r0, n2 ´ n1 ´ 1
2se˚

1 ` 1
2pe˚

1 ` e˚
2q if and only if k ď n2 ´ n1 ´ 2.

In Figures 6.2, 6.2, 13, we draw the Kirwan subsets oft˚ě0 corresponding
to the values a “ r8, 5s, c “ r3, 6s. The circle points on the red line repre-
sents the admissible points occurring with multiplicity 1 in QK pn1, n2q. The
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diamond points on the blue line represents the admissible points occurring
with multiplicity ´1 in QK pn1, n2q.

Figure 12: K-Multiplicities for QK p8, 5q

Figure 13: K-Multiplicities for QK p3, 6q

Consider nowM as aT -manifold. Let " L : M Ñ t˚ be the moment map
relative to the action of T which is the composite of "L : M Ñ k˚ with the
projection k˚ Ñ t˚. Thus, the image is the convex hull of ' pn1, n2q andÔits
symmetric image with respect to the diagonal.

Consider Þrst the case wheren1 “ n2 “ 0. Thus our determinant bundle
L0,0 “ Lp3, 2q is ample. The image of the moment map "T0,0 : M Ñ t˚ is
equal to the convex polytope ' with vertices p0, 1

2q, p1
2 , 0q, p1

2 ,´1q, p´1, 1
2q,
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the images of the 4 Þxed pointsr1, 0, 1, 0s, r1, 0, 0, 1s,r0, 1, 1, 0s,r0, 1, 0, 1s.
The only integral point in the interior of the polytope is p0, 0q and the re-
duced spacep" T

0,0q´1pp0, 0qq{T is a point. The representation Qspin
T pM,Sp0, 0qq

is indeed the trivial representation of T .

Figure 14: T -multiplicities for QT p0, 0q

We now concentrate on the casepn1, n2q “ p3, 6q. The line bundle L :“
L3,6 is not an ample bundle, so that its curvature &L is degenerate, and the
Liouville form βL “ &L ^ &L is a signed measure onM . Let us draw the
Duistermaat measurep" L q˚βL , a signed measure ont˚. In red the measure
is with value 1, in blue the measure is with value´1.

We also verify that our theorem is true. Indeed the representation
QT pM,Sp3, 6qq “ QK pM,Sp3, 6qq|T is

1`t´1
1 `t´1

2 `t´2
1 `t´1

1 t´1
2 `t´2

2 `t´3
1 `t´2

1 t´1
2 `t´1

1 t´2
1 `t´3

2 ´t1t2´t1t
2
2´t21t2.

The λ P Z2 such that t$ occurs in QT pM,Sp3, 6qq are the integral points
in the interior of the image of " L pMq : they have multiplicity ˘1, and the
reduced space are points.

6.3 A SUp3q manifold

Consider C4 with its canonical basis te1, . . . , e4u. Let K » SUp3q be the
subgroup ofSUp4q that Þxes e4.

Let T “ SpUp1q ˆ Up1q ˆ Up1qq be the maximal torus of K with Lie
algebra t “ tpx1, x2, x3q,

ř
i xi “ 0u, and Weyl chamber t˚ě0 :“ tξ1 ě ξ2 ě

ξ3,
ř

i ξi “ 0u. We choose the fundamental rootsω1,ω2 so that K/ 1 “

SpUp2q ˆUp1qq and K/ 2 “ SpUp1q ˆUp2qq. Recall that ω1,ω2 generates the
weight lattice $ Ă t˚ so that $ ě0 “ Nω1 ` Nω2. Note also that ρ “ ω1 `ω2.
For any λ P $ ě0 ` ρ, we denoteπ$ the irreducible representation ofK with
highest weight λ ´ ρ.

Let X “ t0 Ă L1 Ă L2 Ă C4, dim Li “ iu be the homogeneous partial
ßag manifold under the action ofSUp4q. We have two lines bundles overX:
L1pxq “ L1 and L2pxq “ L2{L1 for x “ pL1, L2q.

70



Figure 15: T -multiplicities for non ample bundle on Hirzebruch surface

Our object of study is the complex submanifold

M “ tpL1, L2q P X | Ce4 Ă L2u.

The groupK acts onM , and the generic stabilizer of the action isrK/ 1 ,K/ 1 s »

SUp2q. We consider the family of lines bundles

Lpa, bq “ Lba
1 |M b Lb´b

2 |M , pa, bq P N2.

Let SM :“
Ź

C TM be the Spinc-bundle associated to the complex structure
on M . We compute the characters

QK pa, bq :“ QK pM,SM b Lpa, bqq P RpKq.

Again

QK pa, bq “

dim Mÿ

i “0

p´1qiH i pM,OpLpa, bqqq.

We notice that K/ 1 corresponds to the subgroup ofK that Þxes the
line Ce3. The set Y :“ tpL1, L2q P X |L2 “ Ce3 ‘ Ce4u is a K/ 1 -invariant
complex submanifold ofM such that the map pk, yq P K ˆ Y ÞÑ ky P M
factorizes through an isomorphismK ˆK ω1

Y » M . Notice that rK/ 1 ,K/ 1 s
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acts trivially on Y . Thus we are in the ÒidealÓsituation studied in Section
5.4.

If we take a ě 4 and b ě 1 we get that

(6.43) QK pa, bq “ ´

b́ 1ÿ

k“0

πk/ 1`& ´

a´4ÿ

j “0

πj/ 2`&.

In particular the multiplicity of π& (the trivial representation) in QK pa, bq
is equal to ´2.

We now verify the formula (5.38) in our case. The Spinc-bundle SM is
equal to SK/ 1 b K ˆK ω1

SY . The corresponding determinant line bundle
detpSM q satisÞes

detpSM q “ K ˆK ω1
C3/ 1 b K ˆK ω1

detpSY q

“ K ˆK ω1
C2/ 1 b Lb´2

1 .

Hence for the Spinc-bundle SM b Lpa, bq we have

detpSM b Lpa, bqq “ detpSM q b Lpa, bqb2

“ K ˆK ω1
Cp2b̀ 2q/ 1 b Lb2pa`b́ 1q

1 .

The line bundle detpSM b Lpa, bqq is equipped with a natural holomorphic
and hermitian connection ∇. To compute the corresponding moment map
" a,b : M Ñ k˚, we notice that L1 “ K ˆK ω1

L´1 where L Ñ P1 is the
prequantum line bundle overP1 (equipped with the Fubini-Study symplectic
form). If we denoteϕ : Y » P1 Ñ r0, 1s the function deÞned byϕprz1, z2sq “

|z1 |2
|z1 |2`|z2 |2 , we see that

" a,bprk, ysq “ k rppb ` 1q ´ pa ` b ´ 1qϕpyqqω1s .

for rk, ys P M . In this case, the Kirwan set " a,bpMq X t˚ě0 is the non convex
set r0, b ` 1sω1 Y r0, a ´ 2sω2.

We know (see Exemple 3.10) that the setAppk/ 1 qq is equal to the collec-
tion of orbits Kp1`2n

2 ωi q, n P N, i “ 1, 2, and we haveQK pKp1
2ωi qq “ 0 and

QK pKp3`2k
2 ωi qq “ πk/ i`& when k ě 0.

If we apply (5.38), we see thatπk/ 1`& occurs inQK pa, bq only if 3`2k
2 ă

b`1 : sok P t0, . . . , b´1u. Similarly πj/ 2`& occurs inQK pa, bq only if 3`2j
2 ă

a ´ 2 : so j P t0, . . . , a ´ 4u. For all this cases the corresponding reduced
spaces are points and one could check that the corresponding quantizations
are all equal to ´1 (see (5.35)).

Finally we have checked that (5.38) allows us to recover (6.43).
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