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Abstract

This text is a survey of derived algebraic geometry. It covers a variety of general notions and results
from the subject with a view on the recent developments at the interface with deformation quantization.

Contents

1 Selected pieces of history 5

2 The notion of derived schemes 13
2.1 Elements of language of ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 A glimpse of model category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Derived schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Derived schemes, derived moduli problems and derived stacks 28
3.1 Some characteristic properties of derived schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Derived moduli problems and derived schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Derived moduli problems and derived Artin stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Derived geometry in other contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 The formal geometry of derived stacks 39
4.1 Cotangent complexes and obstruction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 The idea of formal descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Tangent dg-lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Derived loop spaces and algebraic de Rham theory . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Symplectic, Poisson and Lagrangian structures in the derived setting 47
5.1 Forms and closed forms on derived stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Symplectic and Lagrangian structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Polyvectors and shifted Poisson structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Introduction

Derived algebraic geometry is an extension of algebraic geometry whose main purpose is to propose a setting to
treat geometrically special situations (typically bad intersections, quotients by bad actions etc . . . ), as opposed
to generic situations (transversal intersections, quotients by free and proper actions etc . . . ). In order to present
the main flavor of the subject we will start this introduction by a focus on the emblematic special situation
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in the context of algebraic geometry, or in geometry in general: basic intersection theory. The setting is here
a smooth ambient algebraic variety X (e.g. X = Cn), and two algebraic smooth sub-varieties Y and Z in
X, defined by some system of algebraic equations. The problem is to understand, in a refine and meaningful
manner, the intersection Y ∩ Z of the two sub-varieties inside X. The nice/generic situation happens when
the two sub-varieties meet transversally in X (when the tangent spaces of Y and Z generate the whole tangent
space of X), in which case their intersection is itself a sub-variety which possesses all the expected properties
(e.g. its codimension is the sum of the codimensions of the two sub-varieties). The pathologies appear precisely
when the intersection ceases to be transversal, for instance because Y and Z meet with some non-trivial
multiplicities, but also because some of the components of the intersection are not of the expected dimension.
In these pathological cases, the naive intersection in X fails to represent the correct and expected intersection.
The geometric treatment of these special situations is classically based on cohomological methods, for which
the correct intersection is obtained as a cohomology class on X (e.g. an element in de Rham cohomology, in
complex cobordism, in algebraic K-theory or in the intersection ring, eventually with a support condition). In
this approach the two varieties Y and Z must first be slightly deformed in X, in order to obtain a generic
situation for which the intersection of the deformed sub-varieties becomes nice. This cohomological approach
has shown to be extremely powerful, particularly when concerned with questions of numerical natures (typically
in enumerative geometry). However, its main drawback is to realize the intersection Y ∩ Z by an object which
is not of geometric nature anymore and is only a cohomology class.

Derived algebraic geometry offers a setting in which the intersection Y ∩ Z is realized as a derived scheme,
an object which at the same time encompasses the cohomological and numerical aspects of the intersection, but
remains of geometric nature. This derived intersection is obtained by a certain homotopical perturbation of the
naive intersection Y ∩ Z, which now comes equipped with an additional structure, called the derived structure,
that reflects the different possible pathologies (existence of multiplicities, defect of expected dimension etc).
Intuitively, the derived intersection consists of triples (y, z, α), where x is a point in Y , z a point in Z, and α is
a infinitesimally small continuous path on X going from x to y. The third component, the path α, is here the
new feature, and is responsible for the derived structure existing on the naive intersection Y ∩ Z, which itself
sits inside the derived intersection as the locus where α is constant. It is however difficult to provide a precise
mathematical meaning of the expression infinitesimally small continuous path on X, without having to go deep
into the technical details of the definition of a derived scheme (see definitions 2.1 and 2.7). Indeed, the nature
of the path α above is higher categorical, and consists of a homotopy (or equivalently a 2-morphism) in the
∞-category of derived schemes that will be introduced in our paragraph §2.2 after having reviewed elements
of ∞-category theory. We therefore kindly ask to the reader to use his imagination, and to believe that these
concepts can be mathematically incarnated in a meaningful manner which will be discussed later on in the main
body of this paper. It turns out that this point of view on the specific problem of intersecting two sub-varieties is
very general, and can also be applied to deal with other instances of special situations encountered in algebraic
geometry, or in geometry in general. Another important example we would like to mention in this introduction
is the problem of considering the quotient X/G of a non-free action of an algebraic group G on a variety X.
In the same way that we have perturbed the naive intersection by introducing a small path α as explained
above, we can introduce a refined quotient by requiring that for x ∈ X and g ∈ G, the points x and gx are
not necessarily equal in X/G, but are homotopic, or equivalently linked by a path. Taking the quotient of X
by G in this new sense consists of formally adding a path between each pair of points (x, gx), whose result
is a well-known and already well identified object: the quotient stack of X by G (see [Laum-More, 2.4.2]), or
equivalently the quotient groupoid (see [Laum-More, 2.4.3]).

This important idea to replace an intersection Y ∩ Z, which amounts of points (y, z) with y = z, by the
triples (y, z, α) as above, or a to treat a quotient X/G as explained before, is not new and belongs to a much
more general stream of ideas often referred as homotopical mathematics (whose foundations can be the ho-
motopy theory of type of Voevodsky and al., see [TUFP], I guess). In one word, the expression homotopical
mathematics reflects a shift of paradigm in which the equality relation is weakened into the homotopy relation1.
Derived algebraic geometry is precisely what happens to algebraic geometry when it is considered through the
point of view of homotopical mathematics. The purpose of this survey is on the one hand to explain how these

1It is is very similar to the shift of paradigm that has appeared with the introduction of category theory, for which being equal
has been replaced by being naturally isomorphic.

2



ideas have be realized mathematically, and on the other hand to try to convince the reader that derived alge-
braic geometry brings a new and interesting point of view on several aspects and questions of algebraic geometry.

The mathematical foundations of derived algebraic geometry are relatively recent, and appears in the early
2000’ in a series of works [Toën-Vezz1], [Toën-Vezz2], [Toën-Vezz3], [Luri3], [Toën2], [Luri4]. It has emerged
due to successive seminal works and important ideas in algebraic geometry as well as in algebraic topology
and mathematical physics and which go back at least to the early 50’ (see §1 for a selection of these pieces of
history). Derived algebraic geometry has then been developing very fast during the last decade, due to the works
of various authors, and the subject possesses today very solids foundations as well as a rather large spectrum of
interactions with other mathematical domains, from the study of moduli spaces in algebraic geometry, to some
aspect of arithmetic geometry and number theory, passing by geometric representation theory and mathematical
physics. It would be impossible to mention all the recent advances in the subject. However, we would like to
emphasis here several recent progresses, belongings to different mathematical domains, that derived algebraic
geometry has recently made possible.

1. Geometric Langlands: The geometric version of the Langlands correspondence, as introduced by Beilin-
son and Drinfeld (see [Beil-Drin]), predicts the existence of an equivalence between two derived categories
attached to a given smooth and proper complex curve C and a reductive group G. On the one hand, we
have the moduli space (it is really a stack, see [Laum-More]) BunG(C) of principal G-bundles on C, and
the corresponding derived category of D-modules D(DBunG(X)). On the other hand, if G∨ denotes the
Langlands dual of G, we have the moduli space (again a stack) LocG∨(C) of principal G∨-bundles on C
endowed with flat connections, as well as its quasi-coherent derived category Dqcoh(LocG∨(C)). The geo-
metric Langlands correspondence essentially predicts the existence of an equivalence of categories between
Dqcoh(LocG∨(C)) and D(DBunG(X)) (see [Gait2]). Derived algebraic geometry interferes with the subject
at various places. First of all, the moduli space LocG∨(C) naturally comes equipped with a non-trivial
derived structure, concentrated around the points corresponding to flat G∨-bundles with many automor-
phisms. This derived structure must be taken into account for the expected equivalence to exist, as it
modifies non-trivially the derived category Dqcoh(LocG∨(C)) (see for instance [Toën2, §4.4(5)]). Moreover,
the statement that the two above derived categories are equivalent is only a rough approximation of the
correct version of the geometric Langlands correspondence, in which the notion of singular supports of
bounded coherent complexes on LocG∨(C) must be introduced, a notion which is of derived nature (see
[Arin-Gait]).

2. Topological modular forms: The notion of topological modular forms lies at the interface between
stable homotopy theory, algebraic geometry and number theory (see [Hopk]). It has been observed that
the formal deformation space of an elliptic curve E gives rise to a generalized cohomology theory ellE ,
or equivalently a ring spectrum, called elliptic cohomology associated to E. The spectrum of topological
modular forms itself appears by an integration over the whole moduli space of elliptic curves of the spectra
ellE . The integration process has been considered as a very technical question for a long time, and has first
been solved by deformation theory (see [Goer] for more about the subject). More recently, a completely
new approach, based on derived algebraic geometry (or more precisely its topological analogue, spectral
geometry, see §3.4) has been proposed in [Luri5], in which the various spectra ellE are interpreted of the
natural structure sheaf of a certain spectral scheme (or rather stack) of elliptic curves. This approach
not only has provided a natural and functorial point of view on elliptic cohomology, but also has had
some important impact (e.g. the existence of equivariant version of elliptic cohomology, and later on the
construction of the topological automorphic forms in [Behr-Laws]).

3. Deformation quantization: In [Pant-Toën-Vaqu-Vezz], the authors have started developing a derived
version of symplectic geometry motivated by the search of natural quantizations of moduli spaces e.g.
Donaldson-Thomas moduli of sheaves on higher dimensional Calabi-Yau varieties. This is the first step of
derived Poisson geometry and opens a new field of investigations related to a far reaching generalization
of deformation quantization (see [Toën6]). This research direction will be partially presented in this
manuscript (see §5). In a similar direction derived symplectic geometry has been used to construct and

3



investigate quantum field theories (see [Grad-Gwil, Cost]). In these works, derived algebraic geometry is
essential. Many of the moduli spaces involved here are extremely singular (e.g. principal G-bundles on a
Calabi-Yau 3-fold), and it is only when considered as derived schemes (or derived stacks) that it can be
noticed that they carry very rich geometric structures, such as symplectic or Poisson structures, which
are impossible to see at the un-derived level.

4. p-adic Hodge theory: Finally, Bhatt (see [Bhat1, Bhat2]), building on Beilinson’s groundbreaking
new proof of Fontaine’s CdR conjecture ([Beil]), has given strikingly short new proofs of the generalized
Fontaine-Jannsen Cst and Ccrys, relating the algebraic de Rham cohomology of algebraic varieties over
p-adic local fields and their étale p-adic cohomology. This work used in an essential manner the properties
of the derived de Rham cohomology, which computes the de Rham cohomology in the setting of derived
algebraic geometry (see our §4.4 and §5.1), and its relation with crystalline cohomology.

In the present manuscript we propose a survey of derived algebraic geometry, including the very basic defini-
tions and concepts of the theory but also more recent developments with a particular focus on the interactions
with symplectic/Poisson geometry and deformation quantization. The point of view taken is to present as
much as possible mathematical facts, without insisting too much nor on formal or definitional aspects neither
on technical aspects (e.g. no proofs will be given or even sketched). This text is therefore aimed to the readers
interested in having a first look at derived algebraic geometry, but also to readers having already some basic
knowledge of the subject and who wish to have a more global view on it, particularly concerning its most recent
developments. In both cases, the reader will be assumed to have standard knowledge of algebraic geometry,
homological algebra as well as basic model category theory (briefly recalled in §2.1.1).

The text is organized in 5 sections. In Section 1 I have gathered some historical facts concerning the various
ideas that have lead to derived algebraic geometry. Its content does not pretend to be exhaustive, and also
reflects some personal taste and interpretation. I have tried however to cover a large variety of mathematical
ideas that, I think, have influenced the modern development of the subject. This first section is of course
independent of the sequel and can be skipped by the reader if he wishes so (the mathematical content truly
starts in §2.1), but I have the feeling that it can explain at the same time the motivations for derived algebraic
geometry as well as some of the notions and the definitions that will be presented in the next sections. In a way
it can serve as an expended introduction to the present paper.

Section 2 is devoted to introduce the language of derived algebraic geometry, namely higher category theory,
and to present the notion of derived schemes The section starts with a first paragraph on model category theory
and ∞-category theory, by presenting all the basic definitions and facts that will be used all along this paper.
I have tried to present the strict minimum needed for the subject, and a priori no knowledge of higher category
theory is required for this. The second paragraph contains the first mathematical definition of derived schemes
as well as some basic properties. More properties are given in the next section 3, such as base change, virtual
classes, tangent complexes . . . . This is again not exhaustive and I have tried to focus on characteristic properties
of derived schemes (i.e. what make derived schemes better behaved schemes). In the next two paragraphs of
the section I introduce the functorial point of view, derived schemes are then considered as certain ∞-functors
from the ∞-category of simplicial rings. This lead to more examples such as the derived Hilbert schemes of the
derived scheme of characters, and also lead to the notion of derived Artin stacks, necessary in order to represent
most of the moduli problems appearing in derived algebraic geometry. Finally, in the last paragraph I have
presented a short overview of derived algebraic geometry in other contexts, such as derived analytic geometry,
spectral geometry . . .

The purpose of the Section 4 is to present the formal geometry of derived schemes and derived stacks.
It starts with a paragraph on cotangent complexes and obstruction theory. The second paragraph concerns
what I call formal descent, which is a purely derived phenomenon inspired by some previous work in stable
homotopy theory, and which explains how formal completions appear by taking certain quotients by derived
groupoids. The third paragraph presents the so-called tangent dg-lie algebra of a derived scheme or more
generally a derived stack, which is a global counter-part of formal geometry centered around a closed point.
The last paragraph focus on the notion of derived loop schemes and derived loop stacks, which are algebraic

4



analogues of the free loop spaces studied in string topology. It is also explained how these derived loop spaces
are related to differential forms and de Rham theory.

The Section 5 presents symplectic and Poisson structures in the derived setting. It starts by a discussion
of the notion of differential forms and closed differential forms on derived schemes and on derived stacks. In the
next paragraph shifted symplectic and Lagrangian structures are introduced, together with some basic examples
coming from classifying stacks and Lagrangian intersection theory. I have also presented the relations with some
classical notions such as symplectic reduction and quasi-Hamiltonian actions. The paragraph 3 presents the
existence results of symplectic and Lagrangian structures, as well as some generalizations. The last paragraph
of this sections contains the notion of polyvectors, Poisson structures and their quantizations in the derived
setting. It is mainly in progress and has not been fully carried out yet, and will be presented mainly as several
open questions for future research.

Acknowledgements: I am very grateful to B. Keller for bringing to me the idea to write a survey on
derived algebraic geometry, and for his enthusiastic support. I would also like to thank D. Calaque, B. Hennion,
T. Pantev, M. Robalo and G. Vezzosi for numerous conversations that have helped me during the writing of
this paper.

I am also thankful to the referee for his suggestions and comments on an earlier version of this manuscript.

1 Selected pieces of history

In this part we try to trace back a brief, and thus incomplete, history of the mathematical ideas that have lead
to the modern developments of derived algebraic geometry and more precisely to the notion of derived Artin
stacks. We think this might be of some interest for the readers, as a general knowledge but also because derived
algebraic geometry as we will describe later in this work is a synthesis of all these mathematical ideas. As we
will see the subject has been influenced by ideas from various origins, intersection theory in algebraic geometry,
deformation theory, abstract homotopy theory, moduli and stacks theory, stable homotopy theory ... Derived
algebraic geometry remembers the varieties of its origins and therefore possesses different facets and can be
comprehended from different angles. We think that the knowledge of some of the key ideas we describe below
can help understanding the subject, from the philosophical and technical point of view.

The content of the next few pages obviously represents a personal taste and by no means pretends to be
either exhaustive or very objective (thought I have tried to refer to available references as much as possible): I
apologize for any omission and misinterpretation that this might cause.

The Serre intersection formula. It is common to consider the intersection formula of Serre ([Serr]) as
the origin of derived algebraic geometry. It is probably more accurate to consider it as the beginning of the
prehistory of derived algebraic geometry and to acknowledge the starting point of the subject to later works of
Grothendieck, Illusie and Quillen (see below).

The famous intersection formula of Serre expresses an intersection multiplicity in the algebraic setting. For
two irreducible algebraic subsets Y and Z inside a smooth algebraic variety X, the multiplicity i(X,Y.Z,W ) is
a number expressing the number of time that of Y and Z meet along a fixed irreducible component W of Y ∩Z.
The important properties of the intersection number for us is that it is equal to one when Y and Z are smooth
and meet transversely in X. For a non transverse intersection things tend to become more complicated. Under
a special condition called Tor-independance, the intersection number i(X,Y.Z,W ) can be recovered from the
schematic intersection Y ∩ Z: it is the generic lenght of the structure sheaf along the component W

i(X,Y.Z,W ) = lenghtOX,W
(OY,W ⊗OX,W

OZ,W ),

where OX,W is the local ring of functions on X defined near W , and similarly OY,W (resp. OZ,W ) is the local
ring of functions on Y (resp. on Z) defined near W .

5



The Serre intersection formula explains that in general the above formula should be corrected by higher
homological invariant in a rather spectacular way:

i(X,Y.Z,W ) =
∑
i

(−1)ilenghtOX,W
(Tor

OX,W

i (OY,W ,OZ,W )).

One possible manner to understand this formula is that the schematic intersection of Y and Z inside X is not

enough to understand the number i(X,Y.Z,W ), and that the correcting terms Tor
OX,W

i (OY,W ,OZ,W ) should be
introduced. From the angle of derived algebraic geometry the presence of the correcting terms tells that scheme
is not a refine enough notion in order to understand intersection numbers. In generic situations, for instance
under the assumptions that Y and W are smooth and meet transversely inside X, the leading term equals
the multiplicity i(X,Y.Z,W ) and the higher terms vanish. The intersection formula is therefore particularly
useful in non-generic situations for which the intersection of Y and Z has a pathology along W , the worse
pathology being when Y = Z. As we shall see, the main objective of derived algebraic geometry precisely is to
understand non-generic situations and bad intersections. The intersection formula of Serre is obviously a first

step in this direction: the schematic intersection number lenghtOX,W
(Tor

OX,W

0 (OY,W ,OZ,W )) is corrected by
the introduction of higher terms of homological nature.

In modern terms, the formula can be interpreted by saying that i(X,Y.Z,W ) can be identified with
the generic lenght of Y ∩ Z (along W ) considered as a derived scheme as opposed as merely a scheme, as
this will be justified later on (see §2.2). However, in the setting of Serre intersection formula the object

Tor
OX,W
∗ (OY,W ,OZ,W ) is simply considered as a module over OX,W , and the whole formula is of linear nature

and only involves homological algebra. Derived algebraic geometry truly starts when Tor
OX,W
∗ (OY,W ,OZ,W ) is

rather endowed with its natural multiplicative structure and considered at the very least as a graded algebra.
In a way, the intersection formula of Serre could be qualified as a statement belonging to proto-derived alge-
braic geometry : it surely contains some of the main ideas of the subject but is not derived algebraic geometry yet.

The cotangent complexe. In my opinion the true origin of derived algebraic geometry can be found in
the combined works of several authors, around questions related to deformation theory of rings and schemes.
On the algebraic side, André and Quillen introduced a homology theory for commutative rings, now called
Anré-Quillen homology ([Andr, Quil1]), which already had incarnations in some special cases in the work of
Harrison ([Harr]), and Lichtenbaum-Schlessinger ([Lich-Schl]). On the algebro-geometric side, Grothendieck
([Grot1])) and later Illusie ([Illu]) globalized the definition of André and Quillen and introduced the cotangent
complex of a morphism between schemes. These works were motivated by the study of the deformation theory
of commutative rings and more generally of schemes. The leading principle is that affine smooth schemes have a
very simple deformation theory: they are rigid (do not have non-trivial formal deformations), and their group of
infinitesimal automorphisms is determined by global algebraic vector fields. The deformation theory of a general
scheme should then be understood by performing an approximation by smooth affine schemes. Algebraically,
this approximation can be realized by simplicial resolving commutative algebras by smooth algebras, which is
a multiplicative analogue of resolving, in the sense of homological algebra, a module by projective modules.
For a commutative algebra A (say over some base field k), we can chose a smooth algebra A0 and a surjective
morphism A0 → A, for instance by chosing A0 to be a polynomial algebra. We can furthermore find another
smooth algebra A1 and two algebra maps A1 ⇒ A0 in a way that A becomes the coequalizer of the above diagram
of commutative k-algebras. This process can be continued further and provides a simplicial object A∗, made
out of smooth and commutative k-algebras An, together with an augmentation A∗ −→ A. This augmentation
map is a resolution in the sense that if we consider the total complex associated to the simplicial object A∗, we
find that the induced morphism Tot(A∗)→ A induces isomorphisms in cohomology. The deformation theory of
A is then understood by considering the deformation theory of the simplicial diagram of smooth algebras A∗,
for which we know that each individual algebra An possesses a very simple deformation theory. For this, the
key construction is the total complex associated with the simplicial modules of Kälher differential forms

LA := Tot(n 7→ Ω1
An

).

Up to a quasi-isomorphism this complex can be realized as a complex of A-modules and is shown to be in-
dependent of the choice of the simplicial resolution A∗ of A. The object LA is the cotangent complex of the
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k-algebra A, and is shown to control the deformation theory of A: there is a bijective correspondence between
infinitesimal deformations of A as a commutative k-algebra and Ext1A(LA, A). Moreover, the obstruction to
extend an infinitesimal deformation of A to an order three deformation (i.e. to pass from a family over k[x]/x2

to a family over k[x]/x3) lies in Ext2(LA, A). André and Quillen also gave a formula for the higher extension
groups Exti(LA,M) by using the notion of derivations in the setting of simplicial commutative algebras.

The algebraic construction of the cotangent complex has been globalised for general schemes by Grothendieck
([Grot1]) and Illusie ([Illu]). The idea here is that the above construction involving simplicial resolutions can
be made at the sheaf level and applied to the structure sheaf OX of a scheme X. To put things differently:
a general scheme is approximated in two steps, first by covering it by affine schemes and then by resolving
each commutative algebras corresponding to the affine schemes of the covering. One important technical aspect
is the question of how these local constructions glue together, which is overcome by using standard simplicial
resolutions involving infinite dimensional polynomial algebras. For a scheme X (say over the base field k),
the result of the standard resolution is a sheaf of simplicial commutative k-algebras A∗, together with an
augmentation A∗ −→ OX having the property that over any open affine U = SpecA ⊂ X, the corresponding
simplicial algebra A∗(U) is a resolution of A by polynomial k-algebras (possibly with an infinite number of
generators). Taking the total complex of Kälher differential forms yields a complex of OX -modules LX , called
the cotangent complex of the scheme X. As in the case of commutative algebras, it is shown that LX controls
deformations of the scheme X. For instance, first order deformations of X are in bijective correspondence with
Ext1(LX ,OX), which is a far reaching generalization of the Kodaira-Spencer identification of the first order
deformations of a smooth projective complex manifolds with H1(X,TX) (see [Koda-Spen]). In a similar fashion
the second extension group Ext2(LX ,OX) receives obstructions to extend first order deformations of X to
higher order formal deformations.

I tend to consider the introduction of André-Quillen cohomology as well as cotangent complexes of schemes
as the origin of derived algebraic geometry. Indeed, the natural structure behind these construction is that of
pair (X,A∗), where X is the underlying topological (Zariski) space of a scheme and A∗ is a sheaf of simplicial
commutative algebras together with an augmentation A∗ −→ OX . Moreover, this augmentation is a resolution
in the sense that the induced morphism of complexes of sheaves Tot(A∗) → OX induces and isomorphism on
cohomology sheaves. If we compare with the definition 2.1 (see also 2.7) the pair (X,A∗) is a derived scheme.
Here the derived scheme (X,A∗) is equivalent to a scheme, namely (X,OX) itself, which reflects the fact that
A∗ is a resolution of OX . However, if we drop the resolution condition and simply ask for an isomorphism
H0(Tot(A∗)) ' OX , then we find the general definition of a derived scheme. With this weaker condition,
the cohomology sheaves Hi(Tot(A∗)) might not vanish for i 6= 0, and incarnate how far the derived scheme
(X,A∗) is from being equivalent to a scheme. We note here, without being very precise, that in the context of
Serre intersection formula above, the derived scheme obtained by intersecting Y and Z in X has the scheme
intersection Y ∩Z as an underlying scheme. The sheaf of simplicial commutative algebras A∗ will then be such

that the module Tor
OX,W

i (OY,W ,OZ,W )) is the generic fibers at W of the sheaf H−i(Tot(A∗)).
In a way André-Quillen went further than Grothendieck-Illusie in the direction of what derived algebraic

geometry is today, in the sense that they did consider in an essential way simplicial commutative algebras A∗
which might not be resolutions of algebras, and thus can have non-trivial cohomology H∗(Tot(A∗)). This is
a major difference with the work of Grothendieck and Illusie in which all the spaces endowed with a sheaf
of simplicial commutative rings considered are resolutions of actual schemes. In the context of André-Quillen
homology the general simplicial rings appear in the important formula (see [Quil1]):

Exti(LA,M) ' [A,A⊕M [i]],

where here A is a commutative ring, LA its cotangent complex, M an arbitrary A-modules, A ⊕M [i] is the
simplicial algebra which is the trivial square zero extension of A by the Eilenberg-MacLane space K(M, i)
(H−i(Tot(A ⊕ M [i])) = M), and [−,−] on the right hand side denotes the set of maps in the homotopy
category of simplicial algebras over A. This universal property of the cotangent complex of A does not appear
in the works [Grot1] and [Illu], even thought the question of the interpretation of the cotangent complex is
spelled out in [Grot1, p. 4].

To finish this part on the works on cotangent complexes and simplicial resolutions of commutative rings,
there is at least another text in which ideas along the same line appear: a letter from Grothendieck to Serre

7



([Grot-Serr]) and the manuscript pursuing stacks ([Grot2]). In [Grot-Serr, p. 110] Grothendieck suggests a
construction of higher Jacobian of an algebraic variety. A first construction is proposed when the variety is
smooth based on results in local cohomology. For a singular variety Grothendieck suggests to use a simplicial
resolution by smooth algebras and to apply the construction in the smooth case levelwise. This is of course
very much in the style of the definition of the cotangent complex, but years before. Finally, in [Grot2, p. 554]
(end of item 132) Grothendieck mentions the question of representing complexes of projective k-modules geo-
metrically: when the complex is in the ”right quadrant” (according to Grothendieck’s own terms), the answer
is a linear higher stack (see §3.3). However, in the ”wrong quadrant” case, that is for complex concentrated
in negative cohomological degrees Grothendieck asks the question of the type of structure that could represent
such complexes: a derived scheme is of course the answer (see §3.3).

The derived deformation theory (DDT). As we have previously mentioned before the introduction of
cotangent complexes have been mainly motivated by the deformation theory, of algebras and schemes essentially.
The interactions between deformation theory and derived techniques have had a new impulse with a famous
letter of Drinfeld to Schechtman [Drin]. This letter is now recorded as the origin of what is known as the derived
deformation theory (DDT for short), and contains many of the key ideas and notions of derived algebraic geome-
try at the formal level. It has influenced a lot for works on the subject, as for instance [Hini, Mane], culminating
with the work of Lurie on formal moduli problems [Luri1]. The main principle of derived deformation theory
stipulates that any reasonable deformation theory problem (in characteristic zero) is associated to a differential
graded lie algebra (dg-lie algebra in short).

A typical example illuminating this principle is the deformation theory of a smooth and projective complex
manifold X. The corresponding dg-lie algebra is here C∗(X,TX), the cochain complex of cohomology of X
with coefficients in its holomorphic tangent sheaf, which can be turned into a dg-lie algebra using the lie
bracket of vector fields. The space H1(X,TX) can be identified with the first order deformation space of X.
The space H2(X,TX) is an obstruction space, for a given first order deformation η ∈ H1(X,TX) the element
[η, η] ∈ H2(X,TX) vanishes if and only if the first order deformation of X corresponding to η extend to a higher
order deformation. More is true, formal deformations of X can all be represented by the so-called solutions
to the Mauer-Cartan equation: families of elements xi, for i ≥ 1, all of degree 1 in C∗(X,TX) satisfying the
equation

d(x) +
1

2
[x, x] = 0,

where x =
∑
i xi.t

i is the formal power series (thus the equation above is in C∗(X,TX)⊗ k[[t]]).
This principle of the derived deformation theory was probably already in the air at the moment of the letter

[Drin], as dg-lie algebras were used already around the same time in some other works in order to describe
formal completions of moduli spaces (see [Schl-Stas, Gold-Mill]), whose authors also refer to a letter of Deligne.
However, the precise relation between the formal deformation theory considered and the dg-lie algebra was not
clearly explained at that time. For instance, various non quasi-isomorphic dg-lie algebras could describe the
same formal deformation problem (there are famous examples with Quot schemes2). It seems to me that one
of the most important content of the letter of Drinfeld [Drin] is to spell out clearly this relation: a formal
deformation problem is often defined as a functor on (augmented) artinian algebras (see [Schl]), and in order
to get a canonical dg-lie algebra associated to a formal deformation problem we need to extend this to functors
defined on artinian dg-algebras. This is a highly non-trivial conceptual step, which has had a very important
impact on the subject.

To a dg-lie algebra g we can associate a functor F 0
g defined on artinian algebras, by sending such an algebra

A to the set of elements x of degree 1 in g ⊗ A satisfying the Mauer-Cartan equation d(x) + 1
2 [x, x] = 0. The

main observation made in [Drin] is that this functor extends naturally to a new functor Fg now defined on
all artinian dg-algebras (here these are the commutative dg-algebras A with finite total dimension over k), by
using the very same formula: Fg(A) consists of elements x of degree 1 in g ⊗ A such that d(x) + 1

2 [x, x] = 0.

2If Z ⊂ X is a closed immersion of smooth varieties, the two dg-lie algebras RHomOZ
(N ∗Z,X [1],OZ) and

⊕iRHomOZ
(∧iN ∗Z,X [i],OZ) are not quasi-isomorphic but both of them determines the same functor on artinian (non-dg) rings,

namely the deformation problem of Z as a closed subscheme in X. The first dg-lie algebra considers Z as a point in the Hilbert
scheme of X whereas the second dg-lie considers it as a point in the quot scheme Quot(OX).
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Moreover, Drinfeld introduces the Chevalley complex C∗(g) of the dg-lie algebra g, which is by definition the

pro-artinian dg-algebra ̂Sym(g∗[−1]) endowed with a total differential combining the cohomological differential
of g and its lie structure. This pro-artinian dg-algebra pro-represents the functor Fg, and thus is thought as
the ring of formal functions on the hypothetical formal moduli space associated to functor Fg. These ideas has
been formalized and developed by many authors after Drinfeld, as for instance in [Hini, Mane]. The ultimate
theorem subsuming these works is proven in [Luri1] and states that the construction g 7→ Fg can be promoted
to an equivalence between the category of dg-lie algebras up to quasi-isomorphism, and a certain category of
functors from augmented artinian commutative dg-algebras to the category of simplicial sets, again up to weak
equivalences.

We should add a comment here, concerning the relation between the functor F 0
g restricted to artinian non-

dg algebras, and the dg-lie algebra g. It happens often that the functor F 0
g is representable by a (pointed)

scheme M , or in other words that a global moduli space X exists for the moduli problem considered (e.g. g
can be C∗(X,TX) for a variety X having a global moduli space of deformations M). By the construction of
[Grot1, Illu] we know that M as a tangent complex T. It is striking to notice that in general T[−1] and g
are not quasi-isomorphic, as opposed to what is expected. More is true, in general the underlying complex g
can not be the tangent complex of any scheme locally of finite presentation: it is most of the time with finite
dimensional total cohomology, and we know by [Avra] that this can not happen for the tangent complex of a
scheme in general. To put things differently, not only the functor F 0

g can not reconstruct g, but if we try to
extract a dg-lie algebra out of it the result will be not as nice as what g is (e.g. will be with an infinite number
of non-zero cohomology, and probably impossible to describe).

To conclude with the derived deformation theory, we have learned from it that the formal moduli space
associated to a dg-lie algebra is itself a (pro-artinian) commutative dg-algebra, and not merely a commutative
algebra. We also learn that in order to fully understand a deformation problem a functor on artinian algebra is
not enough and that a functor defined on all artinian dg-algebras is necessary. We are here extremely close to
derived algebraic geometry as the main objects of the derived deformation theory are commutative dg-algebras
and more generally functors on commutative dg-algebras. This step of passing from the standard view of point
of deformation theory based on functors on artinian algebras to functors on artinian dg-algebras is one of the
most important step in the history of the subject: obviously the DDT has had an enormous influence on the
development of derived algebraic geometry.

Virtual classes, quasi-manifolds and dg-schemes. One of the most influential work concerning the
global counter part of the derived deformation theory is [Kont1]. The starting point is the moduli space (or
rather stack, orbifold ...) Mg,n(X,β), of stable maps f : C −→ X with fixed degree f∗[C] = β ∈ H2(X,Z),
where C is a curve of genus g with n marked points, and its relation to the Gromov-Witten invariants of the
projective manifold X. The moduli space Mg,n(X,β) is in general very singular and trying to define the GW
invariants of X by peforming some integration on it would lead to the wrong answer. However, following the
DDT philosophy, the space Mg,n(X,β) can be understood locally around a given point f : C −→ X by a very
explicit hyper-cohomology dg-lie algebra

gf := C∗(C, TC(−D)→ f∗(TX)),

where TC(−D) is the sheaf of holomorphic vector fields on C vanishing at the maked points, and the map
TC(−D) → f∗(TX) is the differential of the map f , which defines a two terms complex of sheaves on C. The
dg-lie structure on gf is not so obvious to see, and is a combination of the lie bracket of vector fields on C and
the Atiyah class of the sheaf TX . As in [Drin] we can turn this dg-lie algebra gf into a pro-artinian dg-algebra
by taking its Chevalley complex

Âf := C∗(g).

The stability of the map f implies that the dg-algebra Âf is cohomologically concentrated in negative degrees

and is cohomologically bounded. The algebra H0(Âf ) simply is the ring of formal functions at f ∈Mg,n(X,β).

The higher cohomologies Hi(Âf ), which in general do not vanish for i < 0, provide coherent sheaves locally
defined around f on the space Mg,n(X,β).
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In [Kont1] Kontsevich states that the local sheaves Hi(Âf ) can be glued when the point f now varies and
can be defined globally as coherent sheaves Hi on Mg,n(X,β). The family of sheaves Hi are called higher
structures, and is an incarnation of the globalization of what the DDT gives us at each point f ∈ Mg,n(X,β).
Kontsevich then defines the virtual K-theory class of Mg,n(X,β) by the formula

[Mg,n(X,β)]K−vir :=
∑
i≤0

(−1)i[Hi] ∈ G0(Mg,n(X,β)).

In a similar way, the complex gf [1] has only non-zero cohomology in degree 0 and 1, and thus defines a complex of
vector bundles of lenght 2 locally around f . These local complexes can again be glued to a global perfect complex
of amplitude [0, 1], which is called the virtual tangent sheaf of Mg,n(X,β). It is not strictly speaking a sheaf
but rather the difference of two vector bundles and defines a class in K-theory [Tvir

Mg,n(X,β)
] ∈ K0(Mg,n(X,β)).

Finally, the virtual homological class of Mg,n(X,β) is defined by the formula

[Mg,n(X,β)]vir := τ([Mg,n(X,β)]K−vir) ∩ Td(Tvir
[Mg,n(X,β)]

)−1 ∈ H∗(Mg,n(X,β),Q),

where Td is the Todd class and τ the homological Chern character (also called the Riemann-Roch natural
transformation, from the K-theory of coherent sheaves to homology, see [Fult, §18]).

From the perspective of derived algebraic geometry the important point is that Kontsevich not only in-
troduced the above formula but also provides an explanation for it based on the concept of quasi-manifolds.
For an algebraic variety S the structure of a quasi-manifold on S is the a covering {Ui} of S together with
presentations of each Ui has an intersection φi : Ui ' Yi ∩ Zi, for Yi and Zi smooth algebraic subvarieties
inside a smooth ambient variety Vi. The precise way the various local data Yi, Zi, Vi and φi patch together is
not fully described in [Kont1], but it is noticed that it should involve an non-trivial notion of equivalence, or
homotopy, between different presentations of a given algebraic variety S as an intersection of smooth algebraic
varieties. These patching data, whatever they are, are certainly not patching data in a strict sense: the local
ambient smooth varieties Vi in which Ui embed can not be glued together to obtain a smooth space V in which
S would embed. For instance, the dimensions of the various pieces Vi can be non constant and depend of i. The
precise way to express these compatibilities is left rather open in [Kont1]. However, Kontsevich emphasizes that

the locally defined sheaves Tor
OZi
i (OYi ,OZi), which are coherent sheaves on Ui, glue to the globally defined

coherent sheaves Hi we mentioned before. Therefore, the structure of a quasi-manifold on Mg,n(X,β) does
determine the higher structure sheaves Hi and thus the K-theory virtual class [Mg,n(X,β)]K−vir. The virtual
tangent sheaf can also be recovered from the quasi-manifold structure, again by gluing local constructions. To
each Ui, we can consider the complex of vector bundles on Ui

Ti := (TYi ⊕ TZi → TVi) .

Although the individual sheaves TYi
⊕ TZi

and TVi
do not glue globally on S (again the dimension of Vi can

jump when i varies), the local complexes Ti can be glued to a globally defined perfect complex TvirS , recovering
this way the virtual tangent sheaf by means of the quasi-manifold structure. One technical aspect of these
gluing procedure is that the patching can only be done up to some notion of equivalences (typically the notion
of quasi-isomorphisms between complexes of sheaves) which requires a rather non trivial formalism of descent
which is not discussed in [Kont1]. However, the theory of higher stacks, developed around the time by Simpson
(see below), suggests a natural way to control these gluing.

The notion of quasi-manifolds has been taken and declined by several authors after Kontsevich. Behrend and
Fantechi introduced the notion of perfect obstruction theories on a scheme X (see [Behr-Fant]) which consists
of the data of a perfect complex T on X which formally behave as the virtual tangent sheaf of a structure of
quasi-manifold on X. In [Cioc-Kapr1] Kapranov and Ciocan-Fontanine defined the notion of dg-schemes, close
to the notion of supermanifolds endowed with a cohomological odd vector field Q used in mathematical physics,
which by definition consists of a scheme X endowed a sheaf of commutative coherent OX -dg-algebras. Later on
a 2-categorical construction of dg-schemes appear in [Behr]. All of these notions are approximations, more or
less accurate, of the notion of derived schemes. The can all be used in order to construct virtual classes, and for
instance are enough to define Gromov-Witten invariants in the algebrico-geometric context. However, they all
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suffer from a bad functoriality behaviour and can not be reasonably used as the fundamental object of derived
algebraic geometry (we refer to the end of §3.1 for a more detailled discussion).

Interaction with homotopy theory, stacks and higher stacks. A stack is a categorical generalization
of a sheaf. They are of particular interest in moduli theory, as it is often the case that a given moduli problem
(e.g. the moduli of curves of a given genus) involves objects with non-trivial automorphism groups. In such
a situation the moduli functor becomes a functor from schemes to groupöıds, and the sheaf condition on this
functor is called the descent or stack condition.

In the context of algebraic geometry stacks already appear in the very late 50’, as for instance in [Grot3], as
well as in [Grot4]. They have been introduced to formalize the problem of descent, but also in order to represent
moduli problems with no fine moduli spaces (it is already noted in [Grot4, Prop. 7.1] that a fine moduli space
of curves does not exist). The formal definitions of algebraic stacks appear in [Deli-Mumf] in which it is
shown that the stack of stable curves of a fixed genus is an algebraic stack which is smooth and proper over
SpecZ. It is interesting however to note that many notions, such as fibered categories, descent, quotient stack,
stack of principle bundles, can be found in [Grot4]. The definition of algebraic stack of [Deli-Mumf] has then
been generalized by Artin in [Arti] in order to encompass also moduli problems for which objects might admit
algebraic groups of automorphisms (as opposed to discrete finite groups). In the differential context stacks
appear even before but in disguised form (as differential groupöıds) for the study of foliations (see for example
[Heaf], [Ehre]).

The insight that a notion of higher stack exist and might be useful goes back to [Grot2]. Higher stacks
are higher categorical analog of stacks, and thus of sheaves, and pretend to classify objects for which not only
non-trivial automorphisms exist, but also automorphisms between automorphims, and automorphisms between
automorphisms of automorphisms (and so one) also exist. These higher automorphisms groups are now encoded
in a higher groupöıd valued functor, together with a certain descent condition. In [Grot2] Grothendieck stressed
out the fact that several constructions in rational homotopy theory could be formalized by considering a nice
class of higher stacks called schematic homotopy types, which are very close to be higher version of Artin algebraic
stacks of [Arti]. One of the technical problem encountered in the theory of higher stacks is the fact that it has
to be based on a nice theory of higher categories and higher groupöıds which has not been fully available until
recently, and this aspect has probably delayed the development of higher stack theory. However, in [Simp1]
Simpson proposed a definition of algebraic n-stacks based on the homotopy theory of simplicial presheaves
(due to Jardine and Joyal and largely used in the setting of algebraic K-theory of rings and schemes), using
the principle that any good notion of n-groupöıds should be equivalent to the theory of homotopy n-types (a
principle refered to the homotopy hypothesis in [Grot2], the higher automorphisms groups mentioned above
are then incarnated by the higher homotopy groups of a simplicial set). The definition of algebraic n-stack
of [Simp1] is inductive and based on a previous observation of Walter that algebraic stacks in the sense of
Artin can be defined in any geometrical context in which the notion of a smooth morphism make sense. This
simplicial approach has been extremely fruitful, for instance in the context of higher non-abelian Hodge theory
(see [Simp2, Simp3]), to pursue the schematization direction of Grothendieck’s program of [Grot2] namely the
interpretation of rational homotopy theory and its extension over more general bases (see [Simp1, Thm. 6.1], and
also [Toën1]), or to understand the descent problem inside derived and more generally triangulated categories
(see [Hirs-Simp]).

The introduction of simplicial presheaves as models for higher stacks has had a huge impact on the subject.
First of all it overcomes the technical difficulties of the theory of n-groupöıds and use the power of Quillen’s
homotopical algebra in order to describe some of the fundamental constructions (e.g. fiber products, quotients,
stack associated to a prestacks . . . ). It has also have had the effect of bringing the model category language in
the setting of higher category theory (see [Simp4]): it is interesting to note that most, if not all, of the estab-
lished theory of higher categories are based on the same idea and rely in an essential way on model category
theory ([Simp5], [Luri2], [Rezk] to mention the most important ones). Another aspect is that it has reinforced
the interactions between higher stack theory and abstract homotopy theory. The interrelations between ideas
from algebraic geometry and from algebraic topology is one of the feature of derived algebraic geometry, and
the simplicial point of view of Simpson on higher stacks has contribute a lot to the introduction of the notions
of derived schemes and derived stacks.
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The influence of stable homotopy theory. Abstract homotopy theory, and more particularly the
homotopy theory of simplicial presheaves, have played an important role in the development of higher stacks.
Derived algebraic geometry has also been influenced by stable homotopy theory and to be more precise by
the so-called brave new algebra (an expression introduced by Waldhausen, see [Vogt]). Brave new algebra is
the study of ring spectra, also called brave new rings, or equivalently of multiplicative generalized cohomology
theories. It is based on the observation that the homotopy theory of brave new rings behaves very similarly to
the theory of rings, and that many notions and results of algebra and linear algebra over rings extend to the
brave new setting. First of all, rings embed fully faifthfully into brave new rings and correspond to the discrete
ring spectra. Moreover, the stable homotopy category possesses a non-degenerate t-structure whose heart is the
category of discrete spectra (abelian groups), so in a sense discrete rings generate the whole category of brave
new rings. An efficient way of thinking consists of seeing the category of brave new rings as a kind of small or
infinitesimal perturbation of the category of rings, which is reflected in the fact that the absolute brave new
ring, the sphere spectrum S, can itself be considered as an infinitesimal perturbation of the ring Z.

One fundamental work in this direction is the work of Waldhausen on algebraic K-theory of spaces [Wald].
This has been pursued later on by the introduction of Hochschild and cyclic homology for ring spectra, also called
topological Hochschild and topological cyclic homology, together with a Chern character map (see for instance
[Boks, Boks-Hian-Mads, Pira-Wald, Schw-Vogt-Wald]). Another important impulse has been the introduction
of the Morava K-theories, and their interpretations has the points of the hypothetical object SpecS, the
spectrum (in the sense of algebraic geometry !) of the sphere spectrum (in the sense of topology !). This general
philosophy has been spread out by many authors, see for instance [Mora, Devi-Hopk-Smit, Hopk-Smit, Rave].
It has also been pushed further, with the introduction of the new idea that ring spectra should also have an
interesting Galois theory (see [Rogn, Schw-Wald, McCa-Mina]), leading to the feeling that there should exists
an étale topology for ring spectra that extends the usual étale topology for schemes. In a similar direction,
the theory of topological modular forms (see [Goer] for a survey) enhances the stack of elliptic curves with a
certain sheaf of generalized cohomology theories, and thus with a sheaf of ring spectra, creating an even closer
relation between stable homotopy theory and algebraic geometry. It is notable that the modern approach to
the theory of topological modular forms is now based on spectral algebraic geometry, a topological version of
derived algebraic geometry (see [Luri5]).

I believe that all of these works and ideas from stable homotopy theory have had a rather important impact
on the emergence of derived algebraic geometry, by spreading out the idea that not only rings have spectra (in
the sense of algebraic geometry) but more general and complicated objects such as ring spectra, dg-algebras
. . . . Of course, the fact that ring-like objects can be used to do geometry is not knew here, as for instance a
very general notion of relative schemes appears already in [Haki]. However, the brand new idea was here that
the same general philosophy also applied to ring-like objects of homotopical nature in a fruitful manner.

Mathematical physics. Last, but not least, derived algebraic geometry has certainly benefited from a
stream of ideas from mathematical physics. I am less aware of the subject, but it seems clear that some of the
mathematical structures introduced for the purpose of super symmetry and string theory have conveyed ideas
and concepts closely related to the concept of derived schemes.

A first instance can be found in the several generalizations of manifolds introduced for the purpose of
super symmetry: super manifolds, Q-manifolds, QP-manifolds etc (see [Bere-Leit, Kost, Schw1, Schw2]). Super
manifolds are manifolds endowed with the extra data of odd functions, represented by a sheaf of Z/2-graded
rings. The Q-manifolds are essentially super manifolds together with an vector field Q of degree 1 (i.e. a
derivation sending odd functions to even functions, and vice-versa), which squares to zero Q2 = 0. The super
manifold together with the differential Q gives thus rise to a manifold endowed with a sheaf of (Z/2-graded)
commutative dg-algebras, which is quiet close to what a derived scheme is. One of the main difference between
the theory of Q-manifolds and the theory of derived schemes is the fact that Q-manifolds were not considered
up to quasi-isomorphism. In a way, Q-manifolds can be thought as strict models for derived schemes. The
influence of this stream of ideas on derived algebraic geometry is not only found at the definitional level, but
also at the level of more advanced structures. For instance, the QP-manifolds of [Alex-Kont-Schw-Zabo] are
certainly avatar of the shifted symplectic structures recently introduced in the context of derived algebraic
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geometry in [Pant-Toën-Vaqu-Vezz]. In the same way, the BV-formalism of [Bata-Vilk] also has recent versions
in the setting of derived algebraic geometry (see [Cost-Gwil, Vezz1]).

A second instance is related to mirror symmetry, and more particularly to the homological mirror symmetry
of Kontsevich (see [Kont-Soib]). Mirror symmetry between two Calabi-Yau varieties X and X∨ is here realized
as an equivalence of derived categories D(X) ' Fuk(X∨), between on the one side the bounded coherent derived
category of X (the B-side) and on the other side the Fukaya category of the mirror X∨ (the A-side). This
equivalence induces an equivalence between the formal deformation spaces of D(X) and of Fuk(X∨), which can
be identified with the de Rham cohomology of X and the Quantum cohomology of X∨. Here we find again the
DDT in action, as the identification between the deformation spaces of these two categories and the mentioned
cohomologies requires to consider these moduli spaces as formal derived moduli spaces. This has lead to the
idea that the correct deformation space of D(X) is the full de Rham cohomology of X (and similarly for the
Fukaya category), which again convey the idea that the deformations of D(X) live in a certain derived moduli
space.

Finally, a third instance is deformation quantization. First of all, Kontsevich’s proof of the existence of
deformation quantization of Poisson manifold (see [Kont2]) is based on the identification of two deformation
problems (Poisson algebras and associative algebras), which is obtained by the construction of an equivalence
between the two dg-lie algebras controlling these deformations problems. This is once again an example of
the DDT in action. The recent interactions between derived algebraic geometry and quantization (see our §5,
see also [Toën6]) also suggests that some of the concepts and ideas of derived algebraic geometry might have
come from a part of quantum mathematics (my lack of knowledge of the subject prevents me to make precise
statements here).

Derived schemes and derived stacks. The modern foundations of derived algebraic geometry have been
settled down in a series of papers: [Toën-Vezz1], [Toën-Vezz2], [Toën-Vezz3], [Luri3], [Toën2], [Luri4]. In my
opinion all of the works and ideas previously mentioned have had an enormous influence on their authors. A
particularly interesting point is that not all of the ideas and motivations came from algebraic geometry itself,
as many important ideas also come from abstract homotopy theory and stable homotopy theory. This probably
explains many of the topological flavours encountered in derived algebraic geometry, which is one of the richness
of the subject.

The subject has been developing fast in the last decade, thanks to the works of many authors: B. Antieau,
D. Arinkin, O. Ben-Bassat, D. Ben-Zvi, B. Bhatt, D. Borisov, C. Brav, V. Bussi, D. Calaque, K. Costello, J.
Francis, D. Gaitsgory, D. Gepner, G. Ginot, O. Gwilliam, B. Hennion, I. Iwanari, D. Joyce, P. Lowrey, J. Lurie,
D. Nadler, J. Noel, T. Pantev, A. Preygel, J. Pridham, N. Rozenblyum, T. Schürg,M. Spitzweck, D. Spivak,
M. Vaquié, G. Vezzosi, J. Wallbridge . . . We will obviously not cover all of these works in the present survey,
but will try to mention a variety of them with an aim to the recent works at the interface with deformation
quantization.

2 The notion of derived schemes

In this first part we start by presenting the central object of study of derived algebraic study: derived schemes.
The definition of derived scheme will appear first and is rather straightforward. However, the notions of mor-
phisms between derived schemes is a bit subtle and require first some notions of higher category theory, or
equivalently of homotopical algebra. We will start by a (very) brief overview of model category theory, which
for us will be a key tool in order to understand the notion of ∞-category presented in the second paragraph
and used all along this manuscript. We will then proceed with the definition of the (∞-)category of derived
schemes and provide basic examples. More evolved examples, as well as the further notion of derived moduli
problems and derived algebraic stacks are presented in the next section.

We start by extracting two principles mentioned from the variety of ideas recalled in §1, which are the
foundation principles of derived algebraic geometry. For this we begin by the following metamathematical
observation. A given mathematical theory often aims to study a class of specific objects: algebraic varieties
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in algebraic geometry, topological spaces in topology, modules over a ring in linear algebra . . . . These objects
are in general very complicated (unless the theory might be considered as uninteresting), but it is most often
that a subclass of nice objects naturally shows up. As their names show the nice objects behave nicely, or at
least behave nicer than a generic object. In such a situation, mathematicians want to believe that we fully
understand the nice objects and that a generic object should be approximated, with the best approximation
possible, by nice objects. This metamathematical observation can be seen in action in many concrete examples,
two of them are the following (there are zounds of other examples).

• (Linear algebra) Let A be a ring and we consider A-modules. The nice objects, for instance with re-
spect to short exact sequences, are the projective modules. For a general A-module M the best possible
approximation of M is a resolution of M be means of projective modules

. . . Pn → Pn−1 → . . . P0 →M → 0.

• (Topology) We consider topological spaces, and more particularly their cohomological properties. Spheres
are the nice objects (for instance from the cohomological point of view). For a space X the best possible
approximation of X is a cellular approximation, that is a CW complex X ′ weakly equivalent to X.

These two examples possess many possible variations, for instance by replacing modules over a ring by
objects in an abelian category, or topological spaces by smooth manifolds and cellular approximation by handle
body decompositions. The common denominator to all of these situations is the behavior of the approximation
construction. A delicate question is the uniqueness: approximations are obviously not unique in a strict sense
(e.g. for the two examples above, but this is a general phenomenon) and we have to introduce a new notion
of equivalence in order to control uniqueness and more generally functorial properties. In the examples above
these notions of equivalences are the obvious one: quasi-isomorphisms of complexes in the first example and
weak homotopy equivalences in the second example. As we will see in the next paragraph introducing a new
notion of equivalences automatically create higher categorical, or higher homotopical, phenomenon. This is one
reason of the ubiquity of higher categorical structures in many domains of mathematics.

Derived algebraic geometry is the theory derived from algebraic geometry (with no joke) by applying the
same general principle as above, and by declaring that the good objects are the smooth varieties, smooth schemes
and more generally smooth maps. The approximation by smooth varieties is here the simplicial resolutions of
algebras by polynomial algebras already mentioned during our last section (see §1). Tu summarize:

• (Principle 1 of derived algebraic geometry) The smooth algebraic varieties, or more generally smooth
schemes and smooth maps, are good. Any non-smooth variety, scheme or maps between schemes, must
be replaced by the best possible approximation by smooth objects.

• (Principle 2 of derived algebraic geometry) Approximations of varieties, schemes and maps of schemes,
are expressed in terms of simplicial resolutions. The simplicial resolutions must only be considered up to
the notion of weak equivalence, and are controlled by higher categorical, or homotopical, structures.

Based on these two principles we can already extract a general definition of a derived scheme, simply by
thinking that the structure sheaf should now be a sheaf of simplicial commutative rings rather than a genuine
sheaf of commutative rings. However, principle 2 already tells us that morphisms between these derived schemes
will be a rather involved notion and must be defined with some care.

Definition 2.1 (First definition of derived schemes) A derived scheme consists of a pair (X,OX), where X is
a topological space and AX is a sheaf of commutative simplicial rings on X, and such that the following two
conditions are satisfied.

1. The ringed space (X,π0(OX)) is a scheme.

2. For all i > 0 the homotopy sheaf πi(OX) is a quasi-coherent sheaf of modules on the scheme (X,π0(OX)).
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Some comments about this definition.

• A scheme (X,OX) can be considered as a derived scheme in an obvious manner, by taking OX to be the
constant simplicial sheaf of rings OX .

• In the other way, a derived scheme (X,OX) underlies a scheme (X,π0(OX)) which is called the truncation
of (X,OX).

• A scheme can also be considered as a derived scheme (X,O′X) where now O′X is any simplicial resolution
of OX , that is

π0(O′X) ' OX πi(O′X) = 0 ∀ i > 0.

As we will see the derived scheme (X,O′X) is equivalent to (X,OX) (exactly as a resolution P∗ of module
M is quasi-isomorphic to M concentrated in degree 0).

• For a derived scheme (X,OX), the truncation (X,π0(OX)) contains all the geometry. The sheaves πi(OX)
on (X,π0(OX)) are pieces reflecting the derived structure and should be thought as extraordinary nilpotent
functions. The sheaves πi(OX) are analogous to the graded pieces In/In+1 where I is the nilradical of a
scheme Y , which are sheaves on the reduced subscheme Yred. It is a good an accurate intuition to think
that OX comes equipped with a natural filtration (incarnated by the Postnikov tower, see §2.2) whose
graded pieces are the πi(OX).

The above definition makes derived schemes an easy notion, at least at first sight. However, as already
mentioned, morphisms between derived schemes require some care to be defined in a meaningful manner. In
the sequel of this section we will explain how to deal with derived schemes, how to construct and define their
(∞−)category, but also how to work with them in practice.

2.1 Elements of language of ∞-categories

In this paragraph we introduce the language of ∞-categories. The theory of ∞-categories shares very strong
interrelations with the theory of model category, and most of the possible working definitions of ∞-categories
available today are settled down in the context of model category theory. Moreover, model categories also
provide a rich source of examples of ∞-categories, and from the user point of view a given model category
M can be (should be ?) considered as a concrete model for an ∞-category. It is because of this strong
interrelations between∞-categories and model categories that this section starts with a brief overview of model
category theory, before presenting some elements of the language of ∞-category theory. This language will be
used in order to present the expected notion of maps between derived schemes, incarnated in the ∞-category
dSch of derived schemes presented in the next paragraph.

2.1.1 A glimpse of model category theory

Model category theory deals the localization problem, which consists of inverting a certain class of maps W in
a given category C. The precise problem is to find, and to understand, the category W−1C, obtained out of C
by freely adding inverses to the maps in W . By definition, the category W−1C comes equipped with a functor
l : C −→ W−1C, which sends maps in W to isomorphisms in W−1C, and which is universal with respect to
this property. Up to set theoretical issues, it can be shown that W−1C always exists (see [Gabr-Zism, §I.1.1]).
However, the category W−1C is in general difficult to describe in a meaningful and useful manner, and its
existence alone is often not enough from a practical point of view (see [Toën7, §2.2] for more about the bad
behavior of the localization construction).

Definition. A model category structure on a pair (C,W ) as above consists of extra pieces of data, involv-
ing two other class of maps, called fibrations and cofibrations, satisfying some standard axioms (inspired by
the topological setting of topological spaces and weak equivalences), and insuring that the sets of maps inside
localized category W−1C possess a nice and useful description in terms of homotopy classes of morphisms be-
tween certain objects in C. The typical example of such a situation occurs in algebraic topology: we can take
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C = Top, be the category of topological spaces and continuous maps, and W be the class of weak homotopy
equivalences (continuous maps inducing isomorphisms on all homotopy groups). The localized category W−1C
is equivalent to the category [CW ], whose objects are CW complexes and whose set of maps are homotopy
classes of continuous maps. The upshot of model category theory is that this is not an isolated or specific
example, and that there are zounds of situations of different origins (topological, algebraic, combinatorial etc
. . . ) in which some interesting localized categories can be computed in a similar fashion.

By definition, a model category consists of a complete and cocomplete category C, together with three
classes of maps W (called weak equivalences, or simply equivalences), Fib (called fibrations), and Cof (called
cofibrations), and satisfying the following axioms (see [Quil1, §I.1] or [Hove, §1.1] for more details3).

1. If X
f // Y

g // Z are morphisms in C, then f , g and gf are all in W if and only if two of them are
in W .

2. The fibrations, cofibrations and equivalences are all stable by compositions and retracts.

3. Let

A
f //

i

��

X

p

��
B

g
// Y

be a commutative square in C with i ∈ Cof and p ∈ Fib. If either i or p is also in W then there is a
morphism h : B −→ X such that ph = g and hi = f .

4. Any morphism f : X −→ Y can be factorized in two ways as f = pi and f = qj, with p ∈ Fib, i ∈ Cof∩W ,
q ∈ Fib∩W and j ∈ Cof . Moreover, the existence of these factorizations are required to be functorial in
f .

The morphisms in Cof ∩W are usually called trivial cofibrations and the morphisms in Fib ∩W trivial
fibrations. Objects x such that ∅ −→ x is a cofibration are called cofibrant. Dually, objects y such that y −→ ∗
is a fibration are called fibrant. The factorization axiom (4) implies that for any object x there is a diagram

Qx
i // x

p // Rx,

where i is a trivial fibration, p is a trivial cofibration, Qx is a cofibrant object and Rx is a fibrant object.
Moreover, the functorial character of the factorization states that the above diagram can be, and will always
be, chosen to be functorial in x.

The homotopy category of a model category. A model category structure is a rather simple notion,
but in practice it is never easy to check that three given classes Fib, Cof and W satisfy the four axioms above.
This can be explained by the fact that the existence of a model category structure on C has a very important
consequence on the localized category W−1C, which is usually denoted by Ho(C) and called the homotopy
category in the literature4. For this, we introduce the notion of homotopy between morphisms in M in the

3We use in this work the definition found in [Hove], which are not quiet the same as the original notions of [Quil1], and differ by
small changes (e.g. functorality of factorizations). The mathematical community seems to have adopted the terminology of [Hove]
as the standard one.

4This is often misleading, as Ho(C) is obtained by localization and is not a category obtained by modding out the set of maps
by a homotopy relation.
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following way. Two morphisms f, g : X −→ Y are called homotopic if there is a commutative diagram in M

X

i

��

f

""
C(X)

h // Y

X

j

OO

g

<<

satisfying the following two properties:

1. There exists a morphism p : C(X) −→ X, which belongs to Fib ∩W , such that pi = pj = id.

2. The induced morphism

i
⊔
j : X

⊔
X −→ C(X)

is a cofibration.

When X is cofibrant and Y is fibrant in M (i.e. ∅ −→ X is a cofibration and Y −→ ∗ is a fibration), it
can be shown that being homotopic as defined above is an equivalence relation on the set of morphisms from
X to Y . This equivalence relation is shown to be compatible with composition, which implies the existence
of a category Ccf/ ∼, whose objects are cofibrant and fibrant objects and morphisms are homotopy classes of
morphisms in C.

It is easy to see that if two morphisms f and g are homotopic in C then they are equal in W−1C. Indeed,
in the diagram above defining the notion of being homotopic, the image of p in Ho(C) is an isomorphism.
Therefore, so are the images of i and j. Moreover, the inverses of the images of i and j in Ho(C) are equal
(because equal to the image of p), which implies that i and j have the same image in Ho(C). This implies that
the image of f and of g are also equal. From this, we deduce that the localization functor C −→ Ho(C) restricted
to the sub-category of cofibrant and fibrant objects Ccf induces a well defined functor Ccf/ ∼−→ Ho(C). One
major statement of model category theory is that this last functor is an equivalence of categories.

Theorem 2.2 (see [Quil2, §I Thm. 1’] [Hove, Thm. 1.2.10]) The above functor

Ccf/ ∼−→W−1C = Ho(C).

is an equivalence of categories.

The above theorem is fundamental as it allows to control, and to describe in an efficient manner, the localized
category W−1C in the presence of a model structure.

Three examples. Three major examples of model categories are the following.

• We set C = Top be the category of topological spaces, and W the class of weak equivalences (continuous
maps inducing bijections on all homotopy groups). The class Fib is taken to be the Serre fibrations, the
morphism having the lifting property with respect to the inclusions |Λn| ⊂ |∆n|, of a horn (the union of
all but one of the codimension 1 faces) into a standard n-dimensional simplex. The cofibrations are the
retracts of the relative cell complexes. This defines a model category (see [Hove, §2.4]), and the theorem
above states the well known fact that Ho(Top) can be described as the category whose objects are CW
complexes and morphisms are homotopy classes of continuous maps.

• For a ring R we set C(R) the category of (eventually unbounded) complexes of (left) R-modules. The
class W is taken to be the quasi-isomorphisms (the morphisms inducing bijective maps on cohomology
groups). There are two standard possible choices for the class of fibrations and cofibrations, giving
rise to two different model structures with the same class of equivalences, called the projective and the
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injective model structures. For the projective model structure the class of fibrations consists of the the
epimorhisms (i.e. levelwise surjective maps) of complexes of R-modules, and the cofibrations are defined by
orthogonality (see [Hove, §2.3]). Dually, for the injective model structure the class of cofibrations consists
of the monomorphisms (i.e. levelwise injective maps) of complexes of R-modules (see [Hove, §2.3]). These
two model category share the same homotopy category Ho(C(R)) = D(R), which is nothing else than the
derived category of (unbounded) complexes of R-modules. In this case, the theorem above states that the
category D(R) can also be described as the category whose objects are either K-injective, or K-projective,
complexes, and morphisms are homotopy classes of maps between these complexes (see [Hove, §2.3]).

• We set C = sSet := Fun(∆op, Set), the category of simplicial sets. For W we take the class of weak
equivalences of simplicial sets (i.e. the maps inducing weak equivalences on the corresponding geometric
realizations). The cofibrations are defined to be the monomorphisms (i.e. the levelwise injective maps),
and the fibrations are the so-called Kan fibrations, defined as the maps having the lifting property of
the inclusions of the simplicial horns Λk,n ⊂ ∆n (see [Quil1, II §3], [Hove, 3.2]). The homotopy cate-
gory Ho(sSet) is equivalent to the category Ho(Top), via the geometric realization functor, and can be
described as the fibrant simplicial sets (also known as the Kan complexes) together with the homotopy
classes of maps.

Quillen adjunction, homotopy (co)limits and mapping spaces. To finish this paragraph on model
category theory we mention quickly the notions of Quillen adjunctions (the natural notion of functors between
model categories), as well as the important notions of homotopy (co)limits and mapping spaces.

First of all, for two model categories C and D, a Quillen adjunction between C and D consists of a pair of
adjoint functors g : C � D : f (here g is the left adjoint), such that either f preserves fibrations and trivial
fibrations, or equivalently g preserves cofibrations and trivial cofibrations. The main property of a Quillen
adjunction as above is to induce an adjunction on the level of homotopy categories, Lg : C � D : Rf . Here Lg
and Rf are respectively the left and right derived functor deduced from f and g, and defined by pre-composition
with a cofibrant (resp. fibrant) replacement functor (see [Quil1, I §4 Thm. 3], [Hove, §1.3.2]). The typical
example of a Quillen adjunction is given by the geometric realization, and the singular simplex constructions
| − | : sSet � Top : Sing, between simplicial sets and topological spaces. This one is moreover a Quillen
equivalence, in the sense that the induced adjunction at the level of homotopy categories is an equivalence
of categories (see [Hove, §1.3.3]. Another typical example is given by a morphism of rings R → R′ and the
corresponding base change functor R′ ⊗R − : C(R) −→ C(R′) on the level of complexes of modules. This
functor is the left adjoint of a Quillen adjunction (also called left Quillen) when the categories C(R) and C(R′)
are endowed with the projective model structures described before (it is no more a Quillen adjunction for the
injective model structures, except in some very exceptional cases).

For a model category C and a small category I, we can form the category CI of functors from I to C. The
category CI possesses a notion of equivalences induced from the equivalences in C, and defined as the natural
transformations which are levelwise in W (i.e. their evaluations at each object i ∈ I is an equivalence in C). With
mild extra assumptions on C, there exists two possible definition of a model structure on CI whose equivalences
are the levelwise equivalences: the projective model structure for which the fibrations are defined levelwise, and
the injective model structure for which the cofibrations are defined levelwise (see [Luri2, Prop. A.2.8.2]). We
have a constant diagram functor c : C −→ CI , sending an object of C to the corresponding constant functor
I → C. The functor c is left Quillen for the injective model structure on CI , and right Quillen for the projective
model structure. We deduce a functor at the level of homotopy categories c : Ho(C) −→ Ho(CI), which
possesses both a right and a left adjoint, called respectively the homotopy limit and homotopy colimit functors,
and denoted by HolimI , HocolimI : Ho(CI) −→ Ho(C) (see [Luri5, Prop. A.2.8.7] as well as comments [Luri5,
A.2.8.8,A.2.8.11]).

The homotopy limits and colimits are the right notions of limits and colimits in the setting of model category
theory and formally behave as the standard notions of limits and colimits. They can be used in order to see
that the homotopy category Ho(C) of any model category C has a natural further enrichment in simpicial sets.
For an object x ∈ C and a simplicial set K ∈ sSet, we can define an object K ⊗ x ∈ Ho(C), by setting

K ⊗ x := Hocolim∆(K)x ∈ Ho(C),
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where ∆(K) is the category of simplices in K (any category whose geometric realization gives back K up to a
natural equivalence would work), and x is considered as a constant functor ∆(K) −→ C. With this definition,
it can be shown that for two objects x and y in C, there is a simplicial set MapC(x, y) ∈ sSet, with natural
bijections

[K,MapC(x, y)] ' [K ⊗ x, y],

where the left hand side is the set of maps in Ho(sSet), and the right hand side the set of maps in Ho(C).
The simplicial sets MapC(x, y) are called the mapping spaces of the model category C, and can alternatively
be described using the so-called simpicial and cosimplicial resolutions (see [Hove, §5.4]). Their existence implies
that the localized category Ho(C) inherits of an extra structure of a simplicial enrichment, induced by the
model category C. It is important to understand that this enrichment only depends on the pair (C,W ), of a
category and a class of equivalences W . We will see in the next paragraph that this simplicial enrichment is part
of an∞-categorical structure, and that the correct manner to understand it is by introducing the∞-categorical
version of the localization construction (C,W ) 7→ W−1C. This refined version of the localization produces a
very strong bridge between model categories and ∞-categories, part of which we will recall in below.

2.1.2 ∞-Categories

An ∞-category5 is a mathematical structure very close to that of a category. The main difference is that
morphisms in an ∞-category are not elements of a set anymore but rather points in a topological space (and
we think of a set as discrete topological space). The new feature is therefore that morphisms in an ∞-category
can be deformed by means of continuous path inside the space of morphisms between two objects, and more
generally morphisms might come in continuous family parametrized by an arbitrary topological space, as for
instance higher dimensional simplex. This is a way to formalize the notion of homotopy between morphisms
often encountered, for instance in homological algebra where two maps of complexes can be homotopic.

In the theory of∞-categories the spaces of morphisms are only considered up to weak homotopy equivalence
for which it is very common to use the notion of simplicial sets as a combinatorial model (see [Hove, §3] for
more about the homotopy theory of simplicial sets that we use below). This justifies the following definition.

Definition 2.3 An ∞-category T consists of a simplicial enriched category.

Unfolding the definition, an ∞-category consists of the following data.

1. A set Ob(T ), called the set of objects of T .

2. For two objects x and y in T a simplicial set of morphisms T (x, y).

3. For any object x in T a 0-simplex idx ∈ T (x, y)0.

4. For any triple of objects x, y and z in T a map of simplicial sets, called the composition

T (x, y)× T (y, z) −→ T (x, z).

These data are moreover required to satisfy an obvious associativity and unit condition.

Remark 2.4 The notion of ∞-category of 2.3 is not the most general notion of ∞-category, and rather refers
to semi-strict ∞-categories. Semi-strict refers here to the fact that the associativity is strict rather than merely
satisfied up to a natural homotopy, which itself would satisfy higher homotopy coherences. Various other notions
of ∞-categories for which the compositions is only associative up to a coherent set of homotopies are gathered
in [Berg, Lein]. We will stick to the definition above, as it is at then end equivalent to any other notion of
∞-categories and also because it is very easily defined. A counter-part of this choice will be in the definition
of ∞-functors and ∞-categories of ∞-functors which will be described below and for which some extra care is

5Technically speaking we are only considering here (1,∞)-categories, which is a particular case of a more general notion of
∞-categories that we will not consider in this paper.
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necessary. The definition 2.3 seems to us the most efficient in terms of energy spent in the learning of∞-category
theory, particularly for readers who do not wish to spend too much effort on the foundation aspects of derived
algebraic geometry. The theory of ∞-categories as defined in 2.3 and presented below is however the minimum
required in order to later deal with meaningful definitions in derived algebraic geometry.

There is an obvious notion of a morphism f : T −→ T ′ between ∞-categories. It consists into the following
data.

1. A map of sets f : Ob(T ) −→ Ob(T ′).

2. For every pair of objects (x, y) in T , a morphism of simplicial sets

fx,y : T (x, y) −→ T ′(f(x), f(y)).

These data are required to satisfy an obvious compatibility with units and compositions in T and T ′. These
morphisms will be called strict ∞-functors, as opposed to a more flexible, and not equivalent, notion of ∞-
functors that we will introduce later on. The ∞-categories and strict ∞-functors form a category denoted by
∞−Cat. A category C defines an ∞-category by considering the set of morphisms in C as constant simplicial
sets. In the same way, a functor between categories induces a strict ∞-functor between the corresponding
∞-categories. This defines a full embedding Cat ↪→ ∞− Cat, from the category of categories to the category
of ∞-categories and strict ∞-functors. This functor admits a left adjoint

[−] :∞− Cat −→ Cat.

This left adjoint sends an ∞-category T to the category [T ] having the same set of objects as T and whose set
of morphisms are the set of connected components of the simplicial sets of morphisms in T . With a formula:
[T ](x, y) = π0(T (x, y)). The category [T ] will be referred to the homotopy category of T .

The ∞-categories of spaces and of complexes. We mention here two major examples of ∞-categories,
the ∞-category of Kan complexes, and the ∞-category of complexes of cofibrant modules over some ring R.
Let sSets be the category of simplicial sets which is naturally enriched over itself by using the natural simplicial
sets of maps, and thus is an ∞-category in the sense above. We let S be the full sub-∞-category of sSets
consisting of Kan simplicial sets (i.e. fibrant simplicial sets, see [Hove, §3.2]). The homotopy category [S] is
naturally equivalent to the usual homotopy category of spaces.

For a ring B, we let C(B) be the category of (unbounded) cochain complexes of B-modules. It has a natural
enrichement in simplicial sets defined as follows. For two complexes M and N , we define the simpicial set
Map(M,N) by defining the formula

Map(M,N)n := HomC(B)(M ⊗Z C∗(∆
n), N),

where C∗(∆
n) denotes the normalized chain complex of homology of the standard simplex ∆n. This makes

C(B) into an∞-category. We consider L(B) ⊂ C(B) the full sub-∞-category of C(B) consisting of all cofibrant
complexes of B-modules (see [Hove, §2.3]). The homotopy category of L(B) is naturally equivalent to D(B),
the unbounded derived category of complexes of B-modules.

The homotopy theory of ∞-categories. Before going further into ∞-category theory we fix some ter-
minology. A morphism in a given∞-category is simply a 0-simplex of one of the simplicial sets of maps T (x, y).
Such a morphism is an equivalence in T if its projection as a morphism in the category [T ] is an isomorphism.
Finally, we will sometimes use the notation MapT (x, y) for T (x, y).

A key notion is the following definition of equivalences of ∞-categories.

Definition 2.5 A strict ∞-functor f : T −→ T ′ is an equivalence of ∞-categories if it satisfies the two
conditions below.
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1. f is fully faithful: for all x and y objects in T the map T (x, y) −→ T ′(f(x), f(y)) is a weak homotopy
equivalence of simplicial sets.

2. f is essentially surjective: the induced functor [f ] : [T ] −→ [T ′] is an essentially surjective functor of
categories.

The theory of ∞-categories up to equivalence will be our general setting for derived algebraic geometry, it
replaces the setting of categories and functors usually used in algebraic geometry. This is unfortunately not
an easy theory and it requires a certain amount of work in order to extend some of the standard constructions
and notions of usual category theory. The good new is that this work has been done and written down by
many authors, we refer for instance to [Luri2, Simp5] (see also [Toën-Vezz6, §1]). In the paragraph below we
extract from these works the minimum required for the sequel of our exposition. These properties state that
∞-categories up to equivalences behave very much likely as categories up to equivalences of categories, and
thus that the basic categorical notions such as categories of functors, adjunctions, limits and colimits, Yoneda
embedding, Kan extensions ... all have extensions to the ∞-categorical setting.

We have seen that the category∞−Cat of∞-categories and strict∞-functors possesses a class W of equiv-
alences of∞-categories. We set Ho(∞−Cat) := W−1∞−Cat the category obtained from∞−Cat by formally
inverting the morphisms in W , and call it the homotopy category of ∞-categories. The set of morphisms in
Ho(∞ − Cat) will be denoted by [T, T ′] := Ho(∞ − Cat)(T, T ′). The category H(∞ − Cat) is a reasonable
object because of the existence of a model structure on the category ∞− Cat which can be used in order to
control the localization along equivalences of∞-categories (see [Berg]). The sets of morphisms in Ho(∞−Cat)
also have explicit descriptions in terms of equivalent classes of bi-modules (see for instance [Toën7, §4.1 Cor.
1], for the statement on the setting of dg-categories).

(non-strict) ∞-Functors. By definition an (non-strict) ∞-functor between two ∞-categories T and T ′ is
an element in [T, T ′]. This definition only provides a set [T, T ′] of ∞-functors, which can be promoted to a full
∞-category as follows. It can be proved that the category Ho(∞− Cat) is cartesian closed: for any pair of
∞-categories T and T ′ there is an object Fun∞(T, T ′) ∈ Ho(∞− Cat), together with functorial (with respect
to the variable U) bijections

[U,Fun∞(T, T ′)] ' [U × T, T ′].

The∞-category Fun∞(T, T ′) is by definition the∞-category of∞-functors from T to T ′. It is only well defined
up to a natural isomorphism as an object in Ho(∞−Cat). As for the case of the sets of maps in Ho(∞−Cat),
the whole object Fun∞(T, T ′) can be explicitly described using a certain ∞-category of fibrant and cofibrant
bi-modules.

Adjunctions, limits and colimits. The existence of ∞-categories of ∞-functors can be used in order
to define adjunctions between ∞-categories, and related notions such as limits and colimits. We say that an
∞-functor f ∈ Fun∞(T, T ′) has a right adjoint if there exists g an object in Fun∞(T ′, T ) and a morphism
h : id→ gf in Fun∞(T, T ), such that for all x ∈ T and y ∈ T ′ the composite morphism

T ′(f(a), b)
g // T (gf(a), g(b))

h // T (a, g(b))

is a weak equivalence of simplicial sets. It can be shown that if f has a right adjoint then the right adjoint
g is unique (up to equivalence). The notion of left adjoint is defined dually. We say that an ∞-category
T possesses (small) colimits (resp. limits) if for all (small) ∞-category I the constant diagram ∞-functor
c : T −→ Fun∞(I, T ) has a left (resp. right) adjoint. The left adjoint (resp. right adjoint), when it exists is
simply denoted by colimI (resp. limI).

Yoneda, prestacks and left Kan extensions. We remind the ∞-category S consisting of Kan sim-
plicial sets. Any ∞-category T has an ∞-category of prestacks Pr(T ), also denoted by T̂ , and defined to
be Fun∞(T op,S), the ∞-category of contravariant ∞-functors from T to S. There is a Yoneda ∞-functor
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h : T −→ T̂ , which is adjoint to the ∞-functor T : T × T op −→ S sending (x, y) to T (x, y) (when T does not
have fibrant hom simplicial sets this definition has to be pre-composed with chosing a fibrant replacement for
T ). The ∞-functor h is full faithful, and moreover, for all F ∈ T̂ we have a canonical equivalence of simplicial

sets T̂ (hx, F ) ' F (x). The Yoneda embedding h : T −→ T̂ can also be characterized by the following universal
property. For every ∞-category T ′ which admit colimits, the restriction ∞-functor

− ◦ h : Fun∞c (T̂ , T ′) −→ Fun∞(T, T ′)

is an equivalence of ∞-categories, where Fun∞c (T̂ , T ′) is the full sub-∞-category of Fun∞(T̂ , T ′) consisting of
∞-functors that commute with colimits (see [Luri2, Thm. 5.1.5.6]). The inverse ∞-functor Fun∞(T, T ′) −→
Fun∞c (T̂ , T ′) is called the left Kan extension.

Localization and model categories. An important source of ∞-categories come from localization, the
process of making some morphisms to be invertible in a universal manner. For a category C and a subset W of
morphisms in C, there is an ∞-category L(C,W ) together with an ∞-functor l : C −→ L(C,W ), such that for
any ∞-category T , the restriction through l induces an equivalence of ∞-categories

Fun∞(L(C,W ), T ) ' Fun∞W (C, T ),

where Fun∞W (C, T ) denotes the full sub-∞-category of Fun∞(C, T ) consisting of all ∞-functors sending W to
equivalences in T . It can be shown that a localization always exists (see [Hirs-Simp, Prop. 8.7], see also [Toën7,
§4.3] for dg-analogue), and is equivalent to the so-called Dwyer-Kan simplicial localization of [Dwye-Kan1].
The homotopy category Ho(L(C,W )) is canonically equivalent to the localized category W−1C in the sense
of Gabriel-Zisman (see [Gabr-Zism, §1]). In general L(C,W ) is not equivalent to W−1C, or in other words its
mapping spaces are not 0-truncated. The presence of non-trivial higher homotopy in L(C,W ) is one justification
of the importance of ∞-categories in many domains of mathematics.

When C is moreover a simplical model category, and W its subcategory of weak equivalence, the localization
L(C,W ) is simply denoted by L(C), and can be described, up to a natural equivalence, as the simplicially en-
riched category Ccf of fibrant and cofibrant objects in C (see [Dwye-Kan2]). Without the simplicial assumption,
for a general model category C a similar result is true but involves mapping spaces as defined in [Dwye-Kan2]
and [Hove, §5.4] using simplicial and cosimplicial resolutions. For a model category C, and small category I, let
CI be the model category of diagrams of shape I in C. It is shown in [Hirs-Simp, §18] (see also [Luri2, Prop.
4.2.4.4]) that there exists a natural equivalence of ∞-categories

L(M I) ' Fun∞(I, L(M)).

This is an extremely useful statement which can be used in order to provide natural models for most of the
∞-categories encountered in practice. One important consequence is that the ∞-category L(M) always has
limits and colimits, and moreover that these limits and colimits in L(M) can be computed using the well known
homotopy limits and homotopy colimits of homotopical algebra (see [Dwye-Hirs-Kan-Smit] for a general discus-
sion about homotopy limits and colimits).

The ∞-category of ∞-categories. The localization construction we just described can be applied to the
category ∞−Cat, of ∞-categories and strict ∞-functors, together with W being equivalences of ∞-categories
of our definition 2.5. We thus have an ∞-category of ∞-categories

∞−Cat := L(∞− Cat).

The mapping spaces in ∞−Cat are closely related to the ∞-category of ∞-functors in the following manner.
For two ∞-categories T and T ′, we consider Fun∞(T, T ′), and the sub-∞-category Fun∞(T, T ′)eq consisting
of ∞-functors and equivalences between them. The ∞-category Fun∞(T, T ′)eq has a geometric realization
|Fun∞(T, T ′)eq|, obtained by taking nerves of each categories of simplicies, and then the diagonal of the corre-
sponding bi-simplicial set (see below). We have a weak equivalence of simplicial sets

Map∞−Cat(T, T
′) ' |Fun∞(T, T ′)eq|,
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which expresses the fact that mapping spaces in ∞ − Cat are the spaces of ∞-functors up to equivalence.
Another important aspect is that ∞ − Cat possesses all limits and colimits. This follows for instance from
the existence of a model structure on simplicially enriched categories (see [Berg]). We refer to [Hirs-Simp, Cor.
18.7] for more about how to compute the limits in ∞−Cat in an explicit manner.

A second important fact concerning the ∞-category of ∞-categories is the notion of ∞-groupoids. The
∞-groupoids are defined to be the ∞-categories T for which the homotopy category [T ] is a groupoid, or in
other words for which every morphism is an equivalence. If we denote by ∞−Gpd the full sub-∞-category of
∞−Cat consisting of∞-groupoids, then the nerve construction (also called the geometric realization) produces
an equivalence of ∞-categories

| − | :∞−Gpd ' S.

The inverse of this equivalence is the fundamental∞-groupoid construction Π∞ (denoted by Π1,Se in [Hirs-Simp,
§2]). The use of the equivalence above will be mostly implicit in the sequel, and we will allow ourselves to con-
sider any simplicial sets K ∈ S as an ∞-category through this equivalence.

∞-Topos and stacks. For an∞-category T , a Grothendieck topology on T is by definition a Grothendieck
topology on [T ] (see e.g. [SGA4-1, Exp. II]). When such a topology τ is given, we can define a full sub-∞-
category St(T, τ) ⊂ Pr(T ), consisting of prestacks satisfying a certain descent condition. The descent condition
for a given prestack F : T op → S, expresses that for any augmented simplicial object X∗ → X in Pr(T ), which
is a τ -hypercoverings, the natural morphism

MapPr(T )(X,F ) −→ lim
[n]∈∆

MapPr(T )(Xn, F )

is a weak equivalence in S (and lim is understood in the ∞-categorical sense, or equivalently as a homotopy
limit of simplicial sets). Here, τ -hypercoverings are generalizations of nerves of covering families and we refer
to [Toën-Vezz2, Def. 3.2.3] for the precise definition in the context of ∞-categories. The condition above is
the ∞-categorical analog of the sheaf condition, and a prestack satisfying the descent condition will be called
a stack (with respect to the topology τ). The ∞-category St(T, τ), also denoted by T∼,τ is the ∞-category of
stacks on T (with respect to τ) and is an instance of an ∞-topos (all ∞-topos we will have to consider in this
paper are of this form). The descent condition can also be stated by an ∞-functor F : T op −→ C, where C is
another ∞-category with all limits. This will allow us to talk about stacks of simplicial rings, which will be
useful in the definition of derived schemes we will give below (Def. 2.7). We refer to [Luri2] for more details
about ∞-topos, and to [Toën-Vezz2] for a purely model categorical treatment of the subject.

Stable ∞-categories. Stable ∞-categories are the ∞-categorical counter-part of triangulated categories.
We recall here the most basic definition and the main property as they originally appear in [Toën-Vezz4, §7],
and we refer to [Luri4] for more details.

We say that an∞-category T is stable if it has finite limits and colimits, if the initial object is also final, and
if the loop endo-functor Ω∗ : x 7→ ∗ ×x ∗ defines an equivalence of ∞-categories Ω∗ : T ' T . It is known that
the homotopy category [T ] of a stable ∞-category T possesses a canonical triangulated structure for which the
distinguished triangles are the image of fibered sequences in T . If M is a stable model category (in the sense of
[Hove, §7]), then LM is a stable ∞-category. For instance, if M = C(k) is the model category of complexes of
modules over some ring k, LM , the ∞-category of complexes of k-modules, is stable.

Warning 2.6 We want to warn the reader here before starting to use the language of ∞-categories. We will
use the language in a rather loose way and most of our constructions will be naively presented. We will typically
described a given∞-category by describing its set of objects and simplicial sets of maps between two given objects,
without taking care of defining compositions and units. Most of the time the compositions and units are simply
obvious but it might also happen that some extra work has to be done in order to get a genuine ∞-category. A
typical situation is when the described mapping spaces are only well defined up to weak equivalences of simplicial
sets, or when compositions is only defined up to a natural homotopy, for which it might be not totally obvious
how to define things correctly. This is one of the typical technical difficulties of ∞-category theory that we will
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neglect in the exposition of this paper, but the reader must keep in mind that they can require an important
amount of work to be overcome in some cases.

2.2 Derived schemes

We are now coming back to our first definition of derived schemes 2.1, but from the ∞-categorical point of
view briefly reminded in the last paragraph. We start by considering sComm the ∞-category of simplicial
commutative rings, also called derived rings. It is defined by

sComm := L(sComm),

the∞-categorical localization of the category of simplicial commutative rings sComm with respect to the weak
homotopy equivalences. The weak homotopy equivalences are here morphisms of simplicial commutative rings
A → B inducing a weak homotopy equivalence on the underlying simplicial sets. Any derived ring A provides
a commutative graded ring π∗(A) = ⊕i≥0πi(A), where the homotopy groups are all taken with respect to 0 as
a base point. The construction A 7→ π∗(A) defines an ∞-functor from the ∞-category sComm to the category
of commutative graded rings.

For a topological space X, there is an ∞-category sComm(X) of stacks on X with coefficients in the
∞-category of derived rings. If we let Ouv(X) the category of open subsets in X, sComm can be identified
with the full sub-∞-category of Fun∞(Ouv(X)op, sComm), consisting of ∞-functors satisfying the descent
condition (see §2.1.2). For a continuous map u : X −→ Y we have an adjunction of ∞-categories

u−1 : sComm(Y ) � sComm(X) : u∗.

We start by defining an ∞-category dRgSp, of derived ringed spaces. Its objects are pairs (X,OX), where
X is a topological space and OX ∈ sComm(X) is a stack of derived rings on X. For two derived ringed spaces
(X,OX) and (Y,OY ) we set

Map((X,OX), (Y,OY )) :=
∐

u:X→Y
MapsComm(Y )(OY , u∗(OX)).

This definition can be promoted to an ∞-category dRgSp, whose objects are derived ringed spaces and whose
simplicial sets of maps are defined as above. Technically speaking this requires the use of some more advanced
notion such as fibered∞-categories, but can also be realized using concrete model category structures of sheaves
of simplicial commutative rings (this is a typical example for our warning 2.6 in a practical situation6).

Any derived ringed space (X,OX) has a truncation (X,π0(OX)) which is a (underived) ringed space, where
π0(OX) denotes here the sheaf of connected components. We define dRgSploc as a (non-full) sub-∞-category of
dRgSp consisting of objects (X,OX) whose truncation (X,π0(OX)) is a locally ringed space, and maps inducing
local morphisms on the ringed spaces obtained by truncations. The inclusion ∞-functor dRgSploc ↪→ dRgSp
is not fully faithful but it is faithful in the sense that the morphisms induced on mapping spaces are inclusions
of union of connected components.

With this new language the ∞-category of derived schemes is defined as follows.

Definition 2.7 The ∞-category of derived schemes is defined to be the full sub-∞-category of dRgSploc con-
sisting of all objects (X,OX) with the two conditions above satisfied.

1. The truncation (X,π0(OX)) is a scheme.

2. For all i the sheaf of π0(OX)-modules πi(X) is quasi-coherent.

The ∞-category of derived schemes is denoted by dSt.

6From now on we will not refer to the warning 2.6 any more.
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A ring can be considered as a constant simplicial ring, and this defines a full embedding i : Comm ↪→
sComm, from the category of commutative of rings to the ∞-category of derived rings. This inclusion has a
left adjoint given by the ∞-functor π0. This adjunction extends to an adjunction at the level of derived ringed
spaces, derived locally ringed spaces and derived schemes. We thus have an adjunction

t0 : dSch � Sch : i,

between the ∞-category of schemes and the category of schemes. The functor i is moreover fully faithful, and
therefore schemes sit inside derived schemes as a full sub-∞-category. The∞-functor t0 sends a derived scheme
(X,OX) to the scheme (X,π0(OX)). We will often omit to mention the functor i and simply considered Sch as
sitting inside dSch as a full sub-category. By adjunction, for any derived scheme X there is a natural morphism
of derived schemes

j : t0(X) −→ X.

Remark 2.8 It is an accurate analogy to compare the morphism j : t0(X) −→ X with the inclusion Yred ↪→ Y ,
of the reduced sub-scheme Yred of a scheme Y . In this way, the truncation t0(X) sits inside the derived scheme
X, and X can be thought as some sort of infinitesimal thickening of t0(X), but for which the additional
infinitesimals functions live in higher homotopical degrees.

The truncation t0 possesses generalizations t≤n for various integers n ≥ 0 (with t0 = t≤0). Let X be a
derived scheme. The stack of derived rings OX has a Postnikov tower

OX // . . . // t≤n(OX) // t≤n−1(OX) // . . . // t0(OX) = π0(OX).

It is characterized, as a tower of morphisms in the ∞-category of stacks of derived rings on X, by the following
two properties.

• For all i > n, we have πi(t≤n(OX)) ' 0.

• For all i ≤ n, the morphism OX −→ t≤n(OX) induces isomorphisms πi(OX) ' πi(t≤n(OX)).

Each derived ringed space (X, t≤n(OX)) defines a derived scheme, denoted by t≤n(X), and the above tower
defines a diagram of derived schemes

t0(X) // t≤1(X) // . . . // t≤n(X) // t≤n+1(X) // . . . // X.

This diagram exhibits X as the colimit of the derived schemes t≤n(X) inside the ∞-category dSch. The
Postnikov tower of derived schemes is a powerful tool in order to understand maps between derived schemes
and more generall mapping spaces. Indeed, for two derived schemes X and Y we have

MapdSch(X,Y ) ' lim
n≥0

MapdSch(t≤nX, t≤nY ) ' lim
n≥0

MapdSch(t≤nX,Y ),

which presents that mapping spaces as a (homotopy) limit of simpler mapping spaces. First of all, for a given n,
the mapping spaceMapdSch(t≤nX, t≤nY ) is automatically n-truncated (its non-trivial homotopy is concentrated
in degree less or equal to n). Moreover, the projection MapdSch(t≤n+1X, t≤n+1Y ) −→ MapdSch(t≤nX, t≤nY )
can be understood using obstruction theory, as this will be explained in our section §4.1): the description of
the fibers of this projection consists essentially into a linear problem of understanding some specific extensions
groups of sheaves of modules.

The above picture of Postnikov towers is very analogous to the situation with formal schemes: any formal
scheme X is a colimit of schemes Xn together with closed immersions Xn ↪→ Xn+1 corresponding to a square
zero ideal sheaf on Xn+1. This analogy with formal scheme is a rather accurate one.

To finish this paragraph we mention some basic examples of derived schemes and mapping spaces between
derived schemes. More advanced examples will be given in the next paragraph and later on in the sequel.
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Affine derived schemes. We let dAff be the full sub-∞-category of dSch consisting of derived schemes
X whose truncation π0(X) is an affine scheme. Objects in dAff are called affine derived schemes. We have an
∞-functor of global functions

H(−,OX) : dAffop −→ sComm,

sending an affine derived scheme X to H(X,OX) := p∗(OX), where p : X −→ ∗ is the canonical projection, and
p∗ is the induced∞-functor on∞-categories of stacks of derived rings. The∞-functor H can be shown to be an
equivalence of ∞-categories. The inverse ∞-functor of H is denoted by Spec, and can be described as follows.
Let A be a simplicial commutative ring. We consider the (underived) affine scheme S = SpecA0, the spectrum
of the ring of 0-dimensional simplicies in A. The simplicial ring A is in a natural way a simplicial commuta-
tive A0-algebra (through the natural inclusion A0 −→ A) and thus defines a sheaf of simplicial quasi-coherent
OS-modules A on S. This sheaf defines a stack of derived rings on S and thus an object on sComm(S). We
denote by X ⊂ S the closed subset defined by Spec π0(A) (note that the ring π0(A) is a quotient of A0). By
construction, the stack of derived rings A is supported on the closed subspace X, in the sense that its restriction
on S − X is equivalent to 0. This implies that it is equivalent to a stack of derived rings of the form i∗(OX)
for a well defined object OX ∈ sComm(X) (i∗ produces an equivalence between stacks of derived rings on S
supported on X and stacks of derived rings on X). The derived ringed space (X,OX) is denoted by SpecA
and is an affine derived scheme. The two constructions H and Spec are inverse to each others.

Fibered products. The∞-category dSch of derived schemes has all finite limits (see [Toën-Vezz3, §1.3.3]).
The final object is of course ∗ = SpecZ. On the level of affine derived schemes fibered products are described as
follows. A diagram of affine derived schemes X // S Yoo defines, by taking global functions, a corre-

sponding diagram of derived rings A C //oo B . We consider the derived ring D := A⊗L
C B ∈ sComm.

From the point of view of ∞-categories the derived ring D is the push-out of the diagram A C //oo B.
It can be constructed explicitly by replacing B by a simplicial C-algebra B′ which is a cellular C-algebra
(see [Toën-Vaqu1, §2.1] for the general notion of cellular objects), and then considering the naive levelwise
tensor product A ⊗C B′. For instance, when A, B and C are all commutative rings then D is a simplicial
commutative ring with the property that πn(D) ' TorCn (A,B). In general, for a diagram of derived schemes

X // S Yoo , the fibered product X ×S Y can be described by gluing the local affine pictures as above.
Again, when X, Y and S are merely (underived) schemes, Z := X ×S Y is a derived scheme whose truncation
is the usual fibered product of schemes. The homotopy sheave of the derived structure sheaf OZ are the higher
Tor’s

πn(OZ) ' T orOS
n (OX ,OY ).

We see here the link with Serre’s intersection formula discussed at the beginning of our §1.
We note that the inclusion functor i : Sch ↪→ dSch does not preserve fibered products in general, except

under the extra condition of Tor-independence (e.g. if one of the map is flat). On the contrary the truncation
∞-functor t0 sends fibered products of derived schemes to fibered products of schemes. This is a source of a
lot of examples of interesting derived schemes, simply by constructing a derived fibered product of schemes. A
standard example is the derived fiber of a non-flat morphism between schemes.

Self intersections. Let Y ⊂ X be a closed immersion of schemes, and consider the derived scheme
Z := Y ×X Y ∈ dSch. The truncation t0(Z) is isomorphic to the same fibered product computed in Sch, and
thus is isomorphic to Y . The natural morphism t0(Z) ' Y −→ Z is here induced by the diagonal Y −→ Y ×XY .
The projection to one of the factor produces a morphism of derived schemes Z → Y which is a retraction of
Y → Z. This is an example of a split derived scheme Z: the natural map t0(Z) −→ Z admits a retraction (this
is not the case in general). For simplicity we assume that Y is a local complete intersection in X, and we let
I ⊂ OX be its ideal sheaf. The conormal bundle of Y inside X is then N∨ ' I/I2, which is a vector bundle
on Y .

When X = SpecA is affine, and Y = SpecA/I, the derived scheme Z can be understood in a very explicit
manner. Let (f1, . . . , fr) en regular sequence generating I. We consider the derived ring K(A, f∗), which is
obtained by freely adding a 1-simplices hi to A such that d0(hi) = 0 and d1(h1) = fi (see [Toën3], proof of
proposition 4.9, for details). The derived ring K(A, f) has a natural augmentation K(A, f) −→ A/I which is
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an equivalence because the sequence is regular. It is moreover a cellular A-algebra, by construction, and thus
the derived ring A/I ⊗L

A A/I can be identified with B = K(A, f)⊗A A/I. This derived ring is an A/I-algebra
such that π1(B) ' I/I2. As I/I2 is a projective A/I-module we can represent the isomorphism π1(B) ' I/I2

by a morphism of simplicial A/I-modules I/I2[1] −→ B, where [1] denotes the suspension in the ∞-category of
simplicial modules. This produces a morphism of derived rings SymA/I(I/I

2[1]) −→ B, where SymA/I denotes
here the ∞-functor sending an A/I-module M to the derived A/I-algebras it generates. This morphism is an
equivalence in characteristic zero, and thus we have in this case

Z ' Spec (SymA/I(I/I
2[1])).

In non-zero characteristic a similar but weaker statement is true, we have

Z ' SpecB

where now the right hand side is not a free derived ring anymore, but satisfies

π∗(B) ' ⊕i≥0 ∧i (I/I2)[i].

The local computation we just made shows that the sheaf of graded OY -algebras π∗(OZ) is isomorphic to
SymOY

(N∨[1]). However, the sheaf of derived rings OZ is not equivalent to SymOY
(N∨[1]) in general (i.e. in

the non-affine case). It is locally so in characteristic zero, but there are global cohomological obstructions for
this to be globally true. The first of these obstructions is a cohomology class in αY ∈ Ext2Y (N∨,∧2N∨) which
can be interpreted as follows. We have an natural augmentation of stacks of derived rings OZ −→ OY , which
splits as OZ ' OY ×K, where we consider this splitting in Dqcoh(Y ), the derived category of quasi-coherent
complexes on Y . The complex K is cohomogically concentrated in degrees ]−∞, 1], and we can thus consider
the exact triangle

H−2(K)[2] // τ≥−2(K) // H−1(K)[1]
∂ // H−2(K)[3].

The class αY is represented by the boundary map ∂.
The obstruction class αY has been identified with the obstruction for the conormal bundle N∨ to extend to

the second infinitesimal neighbourhood of Y in X. The higher obstruction classes live in ExtiY (N∨,∧iN∨) and
can be shown to vanish if the first obstruction α does so. We refer to [Arin-Cald, Griv] for more details on the
subject, and to [Cala-Cald-Tu] for some refinement.

Remark 2.9 One of the most important derived self intersection is the derived loop scheme X×X×XX, which
we will investigate in more details in our §4.4. It behaves in a particular fashion as the inclusion X −→ X ×X
possesses a global retraction.

Euler classes of vector bundles. We let X be a scheme and V a vector bundle on X (considered as a
locally free sheaf of OX -modules), together with a section s ∈ Γ(X,V ). We denote by V = SpecSymOX

(V ∨)
the total space of V , considered as a scheme over X. The section s and the zero section define morphisms

X
s // V X

0oo , out of which we can form the derived fiber product X ×V X. This derived scheme is
denoted by Eu(V, s), and is called the Euler class of V with respect to s. The truncation t0(Eu(V, s)) consists of
the closed sub-scheme Z(s) ⊂ X of zeros of s, and the homotopy sheaves of the derived structure sheaf OEu(V,s)

controls the defect of Tor-independence of the section s with respect to the zero section.
Locally the structure of Eu(V, s) can be understood using Koszul algebras as follows. We let X = SpecA

and V be given by a projective A-module M of finite type. The section s defines a morphism of A-modules
s : M∨ −→ A. We let K(A,M, s) be the derived ring obtained out of A by freely adding M∨ as 1-simplicies,
such that each m ∈ M∨ has boundary defined by d0(m) = s(m) and d1(m) = 0. This derived ring K(A,M, s)
is a simplicial version of Koszul resolutions in the dg-setting, and SpecK(A,M, s) is equivalent to Eu(V, s). In
characteristic zero, derived rings can also be modelled by commutative dg-algebras (see §3.4), and K(A,M, s)
then becomes equivalent to the standard Koszul algebra SymA(M∨[1]) with a differential given by s.
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3 Derived schemes, derived moduli problems and derived stacks

In this section, we present the functorial point of view of derived algebraic geometry. It consists of viewing
derived schemes as certain (∞−)functors defined on simplicial algebras, similarly than schemes can be considered
as functors on the category of algebras (ref see for instance [Eise-Harr]). This will drive us to the notion of derived
moduli problems and to the representability by derived schemes and more generally by derived Artin stacks,
a derived analogue of algebraic stacks (see [Laum-More]), as well as a far reaching generalization of derived
schemes obtained by allowing some quotients by groupoid actions. We will again provide basic examples,
as well as more advanced examples deduced from the Artin-Lurie representability theorem. Finally, we will
mention the existence of many variations of derived algebraic geometry, such as derived analytic and differential
geometry, derived log geometry, spectral geometry etc . . . .

3.1 Some characteristic properties of derived schemes

We have gathered in this paragraph some properties shared by derived schemes which are characteristics in the
sense that they do not hold in general for schemes without some extra and non-trivial conditions. They provide
a first motivation for the introduction of derived schemes and clearly show that the theory of derived schemes
has much more regularity than the theory of schemes. We will see many more examples in the sequel of this text.

Base change. A scheme X possesses a quasi-coherent derived category Dqcoh(X), which for us will be the
derived category of (unbounded) complexes of OX -modules with quasi-coherent cohomology sheaves (see for
instance [Bond-Vand]). In the same way, a derived scheme X possesses a quasi-coherent derived ∞-category
Lqcoh(X), defined as follows.

We consider ZAff(X) the∞-category of affine open derived subschemes U ⊂ X. The∞-category ZAff(X)
can be shown to be equivalent to a poset and in fact equivalent, through the functor U 7→ t0(U), to the poset
of open subschemes in t0(X) (see [Schu-Toën-Vezz, Prop. 2.1]). For each objects U ∈ ZAff(X) we have its
derived ring of functions AU := H(U,OU ). The simplicial ring AU can be normalized to a commutative dg-
algebra N(AU ), for which we can consider the category N(AU )−Mod of (unbounded) N(AU )-dg-modules (see
[Ship-Schw] for more about the monoidal properties of the normalization functor). Localizing this category along
quasi-isomorphisms defines an ∞-category Lqcoh(U) := L(N(AU )−Mod, quasi− isom). For each inclusion of
open V ⊂ U ⊂ X, we have a morphism of commutative dg-algebras N(AU ) −→ N(AV ) and thus an induced
base change ∞-functor − ⊗L

N(AU ) N(AV ) : Lqcoh(U) −→ Lqcoh(V ). This defines an ∞-functor Lqcoh(−) :

ZAff(X)op −→ ∞−Cat, which moreover is a stack (i.e. satisfies the descent condition explained in §2.1.2)
for the Zariski topology. We set

Lqcoh(X) := lim
U∈ZAff(X)op

Lqcoh(U) ∈ ∞−Cat,

where the limit is taken in the∞-category of ∞-categories, and call it the quasi-coherent derived ∞-category of
X. When X is a scheme, Lqcoh(X) is an∞-categorical model for the derived category Dqcoh(X) of OX -modules
with quasi-coherent cohomologies: we have a natural equivalence of categories

[Lqcoh(X)] ' Dqcoh(X).

When X = SpecA is affine for a derived ring A, then Lqcoh(X) is naturally identified with L(A) the∞-category
of dg-modules over the normalized dg-algebra N(A). We will often use the notation for E ∈ L(A), πi(E) :=
H−i(E). In the same way, for a general derived scheme X, and E ∈ Lqcoh(X), we have cohomology sheaves
Hi(E), which are quasi-coherent sheaves on t0(X), and which are also going to be denoted by πi(E) := H−i(E).

For a morphism between derived schemes f : X −→ Y there is an natural pull-back ∞-functor f∗ :
Lqcoh(Y ) −→ Lqcoh(X), as well as its right adjoint the push-forward f∗ : Lqcoh(X) −→ Lqcoh(Y ). These are
first defined locally on the level of affines derived schemes: the ∞-functor f∗ is induced by the base change of
derived rings whereas the ∞-functor f∗ is a forgetful ∞-functor. The general case is done by gluing the local
constructions (see [Toën2, §4.2], [Toën4, §1.1] for details).
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By the formal property of adjunctions, for any commutative square of derived schemes

X ′
g //

q

��

X

p

��
Y ′

f
// Y

there is a natural morphism between ∞-functors

h : f∗p∗ ⇒ q∗g
∗ : Lqcoh(X) −→ Lqcoh(Y ′).

The base change theorem (see [Toën4, Prop. 1.4]) insures that h is an equivalence of ∞-functors as soon as
the square is cartesian and all derived schemes are quasi-compact and quasi-separated. When all the derived
schemes are schemes and moreover f is flat, then X ′ is again a scheme and the base change formula recovers
the usual well known formula for schemes. When f and p are not Tor-independent the derived scheme X ′ is not
a scheme and the difference between X ′ and its truncation t0(X ′) measures the excess of intersection (see e.g.
[Fult-Lang, §6]). All the classical excess intersection formula can actually be recovered from the base change
formula for derived schemes.

Tangent complexes, smooth and étale maps. Let A be a derived ring and M a simplicial A-module.
We can form the trivial square zero extension A⊕M of A by M . It is a simplical ring whose underlying simplicial
abelian group is A ×M , and for which the multiplication is the usual one (a,m).(a′,m′) = (a.a′, am′ + a′m)
(this formula holds levelwise in the simplicial direction). If we denote by X = SpecA, then Spec (A⊕M) will
be denoted by X[M ], and is by definition the trivial square zero extension of X by M . We note here that M
can also be considered through its normalization as a N(A)-dg-module and thus as an object in Lqcoh(X) with
zero positive cohomology sheaves.

This construction can be globalized as follows. For X a derived scheme and E an object in Lqcoh(X) whose
cohomology is centrated in non positive degrees, we can form a derived scheme X[M ] as the relative spectrum
Spec (OX⊕E). Locally when X = SpecA is affine, E corresponds to a simplicial A-module, and X[M ] simply
is Spec (A ⊕M). The derived scheme X[M ] sits under the derived scheme X itself and is considered in the
comma ∞-category X/dSch of derived schemes under X. The mapping space MapX/dSch(X[M ], X) is called
the space of derivations on X with coefficients in M , and when E = OX this can be considered as the space
of vector fields on X. It is possible to show the existence of an object LX together with a universal derivation
X[LX ] −→ X. The object LX together with the universal derivation are characterized by the following universal
property

MapX/dSch(X[M ], X) 'MapLqcoh(X)(LX ,M).

The object LX is called the absolute cotangent complex of X. Its restriction on an affine open SpecA ⊂ X is a
quasi-coherent complex Lqcoh(SpecA) which corresponds to the simplicial A-module LA introduced in [Quil1].

The absolute notion has a relative version for any morphism of derived schemes f : X −→ Y . There is a
natural morphism f∗(LY ) −→ LX in Lqcoh(X), and the relative cotangent complex of f is defined to be its
cofiber

LX/Y = Lf := cofiber (f∗(LY ) −→ LX) .

It is an object in Lqcoh(X), cohomologically concentrated in non-positive degrees, and equiped with a universal
derivation X[LX/Y ] −→ X which is now a morphism in the double comma ∞-category X/dSch/Y .

One characteristic properties of derived schemes is that cotangent complexes are compatible with fibered
products, as opposed to what is happening in the case of schemes. For any cartesian square of derived schemes

X ′
g //

q

��

X

p

��
Y ′

f
// Y
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the natural morphism g∗(LX/Y ) −→ LX′/Y ′ is an equivalence in Lqcoh(X ′). This property is true in the setting
of schemes only under some Tor-independence conditions insuring the pull-back square of schemes remains a
pull-back in derived schemes (e.g. when one of the morphism f or p is flat, see [Illu]).

We will see later on how cotangent complexes can also be used in order to understand how morphisms
decompose along Postnikov towers and more generally how they control obstruction theories (see our §4.1). Let
us simply mention here that for any derived scheme X, the inclusion of i : t0(X) −→ X induces a morphism
on cotangent complexes i∗(LX) −→ Lt0(X), which is always an obstruction theory on t0(X) in the sense of
[Behr-Fant] (see [Schu] for more details about the relation between derived scheme and the obstruction theories
induced on the truncations).

Finally, cotangent complexes can be used in order to define smooth and étale morphisms between derived
schemes. A morphism f : X −→ Y in dSch will be called étale (resp. smooth) if it is locally of finite presen-
tation (see [Toën-Vezz3, §2.2.2] for the definition of finite presentation in the homotopical context) and if Lf
vanishes (resp. Lf is a vector bundle on X). An étale (resp. smooth) morphism f : X −→ Y of derived schemes
induces an étale (resp. smooth) morphism on the truncations t0(f) : t0(X) −→ t0(Y ), which is moreover flat:
for all i the natural morphism t0(f)∗(πi(OY )) −→ πi(OX) is an isomorphism of quasi-coherent sheaves on t0(X)
(see [Toën-Vezz3, §2.2.2]). We easily deduce from this the so-called Whitehead theorem for derived schemes:
a morphism of derived scheme f : X −→ Y is an equivalence if and only if it induces an isomorphism on the
truncation and if it is moreover smooth.

Virtual classes. For a derived schemeX the sheaves πi(OX) define quasi-coherent sheaves on the truncation
t0(X). Under the condition that t0(X) is locally noetherian, and that πi(OX) are coherent and zero for i >> 0,
we find a well defined class in the K-theory of coherent sheaves on t0(X)

[X]K−vir :=
∑
i

(−1)i[πi(OX)] ∈ G0(t0(X)),

called the K-theoretical virtual fundamental class of X.
The class [X]K−vir possesses another interpretation which clarifies its nature. We keep assuming that t0(X)

is locally noetherian and that πi(OX) are coherent and vanish for i big enough. An object E ∈ Lqcoh(X) will
be called coherent if it is cohomologically bounded and if for all i, Hi(E) is a coherent sheaf on t0(X). The
∞-category of coherent objects in Dqcoh(X) form a thick triangulated sub-category and thus can be used in
order to define G0(X) as their Grothendieck group. The group G0(X) is functorial in X for morphisms whose
push-foward preserves coherent sheaves. This is in particular the case for the natural map j : t0(X) −→ X, and
we thus have a natural morphism j∗ : G0(t0(X)) −→ G0(X). By devissage this map is bijective, and we have

[X]K−vir = (j∗)
−1([OX ]).

In other words, [X]K−vir simply is the (non-virtual) fundamental class of X, considered as a class on t0(X) via
the bijection above. This interpretation explains a lot of things: as j∗([X]K−vir) = [OX ], integrating over t0(X)
with respect to the class [X]K−vir is equivalent to integrating over X. Therefore, in every situation in which
numerical invariant are obtained by integration over a virtual class (typically the Gromov-Witten invariants),
these invariants are actual integrals over certain natural derived schemes.

The virtual class in K-theory can also provide a virtual class in homology. Assume for instance that X is
a derived scheme which is of finite presentation over a field k, and that LX/k is perfect of amplitude [−1, 0]
(i.e. is locally the cone of a morphism between two vector bundles). Then t0(X) is automatically noetherian
and πi(OX) are coherent and vanish for i big enough (see [Toën4, SubLem. 2.3]). Moreover, the inclusion
j : t0(X) −→ X produces a perfect complex j∗(LX/k) whose dual will be denoted by Tvir and called the virtual
tangent sheaf. It has a Todd class in Chow cohomology Td(Tvir) ∈ A∗(t0(X)) (see [Fult]). We can define the
virtual class in Chow homology by the formula

[X]vir := τ([X]K−vir).Td(Tvir)−1 ∈ A∗(t0(X)),

where τ : G0(t0(X)) −→ A∗(t0(X)) is the Grothendieck-Riemann-Roch transformation of [Fult, §18]. We refer
to [Cioc-Kapr2, Lowr-Schu] for more on the subject.
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Finally, K-theoretical virtual classes can be described for some of the basic examples of derived schemes
mentioned in §2.2. For Y ↪→ X a local complete intersection closed immersion of locally noetherian schemes,
the virtual class of Y ×X Y is given by

[Y ×X Y ]K−vir = λ−1(N∨) =
∑
i

(−1)i[∧iN∨] ∈ G0(Y ),

where N is the normal bundle of Y in X. In the same way, for V a vector bundle on a locally noetherian scheme
X, with a section s, the virtual class of Eu(V, s) is the usual K-theoretic Euler class of V

[Eu(V, s)]K−vir = λ−1(V ∨) ∈ G0(Z(s)).

From this we get virtual classes of these two examples in Chow homology, as being (localized) top Chern classes
of the normal bundle N and of V .

Relations with obstruction theories and dg-schemes. Let X be a derived scheme of finite presentation
over some base ring k. The inclusion j : t0(X) −→ X provides a morphism in Lqcoh(t0(X))

j∗ : j∗(LX/k) −→ Lt0(X)/k.

This morphism is a perfect obstruction theory in the sense of [Behr-Fant], and we get this way a forgetful
∞-functor from the ∞-category of derived schemes locally of finite presentation over k to a certain ∞-category
of schemes (locally of finite presentation over k) together with perfect obstruction theories. This forgetful ∞-
functor is neither full nor faithful, but is conservative (as this follows from the already mentioned Whitehead
theorem, or from obstruction theory, see §4.1). The essential surjectivity of this forgetful ∞-functor has been
studied in [Schu]. The notion of derived scheme is strictly more structured than the notion of schemes with a
perfect obstruction theory. The later is enough for enumerative purposes, typically for defining virtual classes
(as explained above), but is not enough to recover finer invariants such as the quasi-coherent derived category
of derived schemes.

The situation with dg-schemes in the sense of [Cioc-Kapr1] is opposite, there is a forgetful functor from dg-
schemes to derived schemes, which is neither full, nor faithful nor essentially surjective, but is conservative. The
notion of dg-schemes is thus strictly more structured than the notion of derived schemes. To be more precise, a
dg-scheme is by definition essentially a pair (X,Z), consisting of a derived scheme X, a scheme Z, and together
closed immersion X −→ Z. Maps between dg-schemes are given by the obvious notion of maps between pairs.
The forgetful ∞-functor simply sends the pair (X,Z) to X. Thus, dg-schemes can only model embeddable
derived schemes, that is derived schemes that can be embedded in a scheme, and maps between dg-schemes can
only model embeddable morphisms. In general, derived schemes and morphisms between derived schemes are
not embeddable, in the exact same way that formal schemes and morphisms between formal schemes are not
so. This explains why dg-schemes is a too strict notion in order to consider certain derived moduli problems
and only sees a tiny part of the general theory of derived schemes.

Finally, there is also a forgetful ∞-functor from derived schemes (maybe of characteristic zero) to the 2-
category of differential graded schemes of [Behr]. This∞-functor is again not full, neither faithful nor essentially
surjective, but is again conservative. The major reason comes from the fact that differential graded schemes of
[Behr] are defined by gluing derived rings only up to 2-homotopy (i.e. in the 2-truncation of the ∞-category of
derived rings), and thus misses the higher homotopical phenomenon.

3.2 Derived moduli problems and derived schemes

In the last paragraph we have seen the ∞-category dSch of derived schemes, some basic examples as well as
some characteristic properties. In order to introduce more advanced examples we present here the functorial
point of view and embed the ∞-category dSch into the ∞-topos dSt of derived stacks (for the étale topology).
Objects in dSt are also called derived moduli problems, and one major question is their representability. We
will see some examples (derived character varieties, derived Hilbert schemes and derived mapping spaces) of
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derived moduli problems representable by derived schemes. In order to consider more examples we will intro-
duce the notion of derived Artin stacks in our next paragraph §3.3, which will enlarge considerably the number
of examples of representable derived moduli problems.

We let dAff be the∞-category of affine derived schemes, which is also equivalent to the opposite∞-category
of derived rings sComm. The ∞-category can be endowed with the étale topology: a family of morphisms
between affine derived schemes {Ui → X} is defined to be an étale covering if

• each morphism Ui −→ X is étale (i.e. of finite presentation and LUi/X ' 0),

• the induced morphism on truncations
∐
i t0(Ui) −→ t0(X) is a surjective morphism of schemes.

The étale covering families define a Grothendieck topology on dAff and we can thus form the ∞-category
of stacks (see §2.1.2). We denote it by

dSt := dAff∼,et.

Recall from §2.1.2 that the ∞-category dSt consists of the full sub-∞-category of Fun∞(sComm,S) of ∞-
functors satisfying the etale descent condition. By definition, dSt is the ∞-category of derived stacks, and is
the∞-categorical version of the category of sheaves on the big étale site of affine schemes (see e.g. [Laum-More,
§1]for the big étale site of underived schemes). Its objects are simply called derived stacks or derived moduli
problems, and we will be interested in their representability by geometric objects such as derived schemes, or
more generally derived Artin stacks.

We consider the Yoneda embedding
h : dSch −→ dSt,

which sends a derived scheme X to its∞-functor of points MapdSch(−, X) (restricted to affine derived schemes).
The ∞-functor h is fully faithful, which follows from a derived version of fpqc descent for schemes (see
[Toën-Vezz3, Luri4]). A derived moduli problem F ∈ dSt is then representable by a derived scheme X if
it is equivalent to hX . Here are below three examples of derived moduli problems represented by derived
schemes.

Derived character varieties. We first describe a derived version of character varieties and character
schemes, which are derived extensions of the usual affine algebraic varieties (or schemes) of linear representations
of a given group (see e.g. [Cule-Shal]).

We fix an affine algebraic group scheme G over some base field k. We let Γ be a discrete group and we define
a derived moduli problem RMap(Γ, G), of morphisms of groups from Γ to G as follows. The group scheme G is
considered as a derived group scheme using the inclusion Schk ↪→ dSchk, of schemes over k to derived schemes
over k. The group object G defines an ∞-functor

G : dAffop
k −→ S−Gp,

from affine derived schemes to the∞-category of group objects in S, or equivalently the∞-category of simplicial
groups. We define RMap(Γ, G) : dAffop

k −→ S by sending S ∈ dAffop
k to MapS−Gp(Γ, G(S)).

The derived moduli problem RMap(Γ, G) is representable by an affine derived scheme. This can be seen as
follows. When Γ is free, then RMap(Γ, G) is a (maybe infinite) power of G, and thus is an affine scheme. In
general, we can write Γ has the colimit in S−Gp of free groups, by taking for instance a simplicial free resolution.
Then RMap(Γ, G) becomes a limit of affine derived scheme and thus is itself an affine derived scheme. When
the group Γ has a simple presentation by generators and relations the derived affine scheme RMap(Γ, G) can
be described explicitly by means of simple fibered products. A typical example appears when Γ is fundamental
group of a compact Riemann surface of genus g: the derived affine scheme RMap(Γ, G) comes in a cartesian
square

RMap(Γ, G) //

��

G2g

��
Spec k // G,
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where the right vertical map sends (x1, . . . , xg, y1, . . . , yg) to the product of commutators
∏
i[xi, yi].

The tangent complex of the derived affine scheme RMap(Γ, G) can be described as the group cohomology
of G with coefficients in the universal representation ρ : Γ −→ G(RMap(Γ, G)). The morphism ρ defines an
action of G on the trivial principal G-bundle on RMap(Γ, G), and thus on the vector bundle V associated to
the adjoint action of G on its lie algebra g. The cochain complex of cohomology of Γ with coefficients in V
provides a quasi-coherent complex C∗(Γ, V ) on RMap(Γ, G). The tangent complex is then given by the part
sitting in degrees [1,∞[ as follows

TRMap(Γ,G) ' C≥1(Γ, V )[1].

The algebraic group G acts on RMap(Γ, G), and when G is linearly reductive we can consider the derived ring
of invariant functions O(RMap(Γ, G))G. The spectrum of this derived ring SpecO(RMap(Γ, G))G is a derived
GIT quotient of the action of G on RMap(Γ, G) and deserves the name of derived character variety of Γ with
coefficients in G.

It is interesting to note here that the above construction can be modified in a meaningful manner. We
assume that Γ is the fundamental group of a connected CW complex X. We can modify the derived moduli
problem of representations of Γ by now considering rigidified local systems on the space X. In the underived
setting these two moduli problems are equivalent, but it is one interesting feature of derived algebraic geometry
to distinguish them. We define RLoc∗(X,G) as follows. We chose a simplicial group Γ∗ with a weak equivalence
X ' BΓ∗, that is Γ∗ is a simplicial model for the group of based loops in X. We then define RMap(Γ∗, G) by
sending a derived scheme S to MapS−Gp(Γ∗, G(S)). This new derived moduli problem is again representable by
a derived affine scheme RLoc∗(X,G). The truncations of RLoc∗(X,G) and RMap(Γ, G) are both equivalent to
the usual affine scheme of maps from Γ to G, but the derived structures differ. This can be seen at the level of
tangent complexes. As for RMap(Γ, G) then tangent complex of RLoc∗(X,G) is given by

TRLoc∗(X,G) ' C∗x(X,V )[1],

where now V is considered as a local system of coefficients on X and we consider the cochain complex of
cohomology of X with coefficients in V , and C∗x(X,V ) denotes the reduced cohomology with respect to the
base point x of X (the fiber of C∗(X,V ) −→ C∗({x}, V ) ' g). Interesting examples are already obtained with
Γ = ∗ and X higher dimensional spheres. For X = Sn, n > 1, and k of caracteristic zero, we have

RLoc∗(X,G) ' SpecSymk(g∗[n− 1]).

The derived scheme of maps. We let k be a commutative ring and X be a scheme which is projective and
flat over Spec k, and Y a quasi-projective scheme over Spec k. We consider the derived moduli problem of maps
of derived k-schemes from X to Y , which sends S ∈ dSchk to MapdSchk

(X × S, Y ). This is a derived stack
(over k) RMapk(X,Y ) ∈ dStk, which can be shown to be representable by a derived scheme RMapk(X,Y )
which is locally of finite presentation of Spec k (see corollary 3.5 for a more general version). The truncation
t0(RMapk(X,Y )) is the usual scheme of maps from X to Y as originally constructed by Grothendieck. Except
in some very specific cases the derived scheme RMapk(X,Y ) is not a scheme. This can be seen at the level
of tangent complexes already, as we have the following formula for the tangent complex of the derived moduli
space of maps

TRMapk(X,Y ) ' π∗(ev∗(TY )) ∈ Lqcoh(RMapk(X,Y )),

where ev : RMapk(X,Y )×X −→ Y is the evaluation morphism, and π : RMapk(X,Y )×X −→ RMapk(X,Y )
is the projection morphism. This formula shows that when Y is for instance smooth, then TRMapk(X,Y ) is perfect
of amplitude contained in [0, d] where d is the relative dimension of X over Spec k. When this amplitude is
actually strictly bigger than [0, 1], the main result of [Avra] implies that RMapk(X,Y ) can not be an (underived)
scheme.

One consequence of the representability of RMapk(X,X) is the representability of the derived group of
automorphisms of X, RAutk(X), which is the open derived sub-scheme of RMapk(X,X) consisting of au-
tomorphisms of X. The derived scheme RAutk(X) is an example of a derived group scheme locally of finite
presentation over Spec k. Its tangent complex at the unit section is the complex of globally defined vector fields
on X over Spec k, H(X,TX). We will see in §5.4 that the complex H(X,TX) always comes equipped with a

33



structure of a dg-lie algebra, at least up to an equivalence, and this dg-lie algebra is here the tangent lie algebra
of the derived group scheme RAutk(X). For the same reasons as above, invoking [Avra], the derived group
scheme RAutk(X) is in general not a group scheme.

Derived Hilbert schemes. We let again X be a projective and flat scheme over Spec k for some commu-
tative ring k. For sake of simplicity we will only be interested in a nice part of the derived Hilbert scheme of
X, corresponding to closed sub-schemes which are of local complete intersection (we refer to [Cioc-Kapr1] for
a more general construction). For any S ∈ dSchk we consider the ∞-category dSch(X×S) of derived schemes

over X × S. We let RHilblci(X)(S) be the (non-full) sub-∞-category of dSch(X×S) defined as follows.

• The objects of RHilb(X)(S) are the derived schemes Z −→ X×S which are flat over S, finitely presented
over X × S, and moreover induce a closed immersion on the truncation t0(Z) ↪→ X × t0(S).

• The morphisms are the equivalences in the ∞-category dSch(X×S).

For a morphism of derived schemes S′ → S, the pull-back induces a morphism of ∞-groupoids

RHilblci(X)(S) −→ RHilblci(X)(S′).

This defines an ∞-functor from dSchopk to the ∞-category of ∞-groupoids which we can compose with the
nerve construction to get an ∞-functor from dSchopk to S, and thus a derived moduli problem. This derived

moduli problem is representable by a derived scheme RHilblci(X) which is locally of finite presentation over
Spec k. Its truncation is the open sub-scheme of the usual Hilbert scheme of X (over k) corresponding to closed
subschemes which are embedded in X as local complete intersections.

The tangent complex of RHilblci(X) can be described as follows. There is a universal closed derived sub-
scheme j : Z −→ X × RHilblci(X), with a relative tangent complex Tj which consists of a vector bundle
concentrated in degree 1 (the vector bundle is the normal bundle of the inclusion j). If we denote by p : Z −→
RHilblci(X) the flat projection, we have

TRHilblci(X) ' p∗(Tj [1]).

In the same way, there exists a derived Quot scheme representing a derived version of the Quot functor. We
refer to [Cioc-Kapr1] for more on the subject.

3.3 Derived moduli problems and derived Artin stacks

It is a fact of life that many interesting moduli problems are not representable by schemes, and algebraic
stacks have been introduced in order to extend the notion of representability (see [Grot4, Deli-Mumf, Arti,
Laum-More]). This remains as is in the derived setting, many derived moduli problems are not representable
by derived schemes and it is necessary to introduce more general objects called derived Artin stacks in order to
overcome this issue.

In the last paragraph we have embedded the∞-category of derived schemes dSch into the bigger∞-category
of derived stacks dSt. We will now introduce an intermediate ∞-category dStAr

dSch ⊂ dStAr ⊂ dSt,

which is somehow the closure of dSch by means of taking quotient by smooth groupoid objects (see [Laum-More,
4.3.1] for the notion of groupoid objects in schemes in the non-derived setting).

A groupoid object dSt (also called a Segal groupoid), consists of an ∞-functor

X∗ : ∆op −→ dSt

satisfying the two conditions below.
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1. For all n the Segal morphism
Xn −→ X1 ×X0

X1 ×X0
· · · ×X0

X1

is an equivalence of derived stacks.

2. The composition morphism
X2 −→ X1 ×X0 X1

is an equivalence of derived stacks.

In the definition above the object X0 ∈ dSt is the derived stack of objects of the groupoid X∗, and X1

the derived stack of morphisms. The morphism in the first condition above is induced by maps [1]→ [n] in ∆
sending 0 to i and 1 to i+ 1. It provides the composition in the grupoid by means of the following diagram

X1 ×X0 X1 ' X2 −→ X1

induced by the morphism [1]→ [2] sending 0 to 0 and 1 to 2. The morphism of the second condition insures that
this composition is invertible up to an equivalence. We refer the reader to [Toën-Vezz2, Def. 4.9.1] [Toën-Vezz3,
§1.3.4] for more about Segal cateories and Segal groupoids objects.

We say that a groupoid object X∗ is a smooth groupoid of derived schemes if X0 and X1 are derived schemes
and if the projections X1 −→ X0 are smooth morphisms of derived schemes. The colimit of the simplicial object
X∗ is denoted by |X∗| ∈ dSt and is called the quotient derived stack of the groupoid X∗.

Definition 3.1 1. A derived stack is a derived 1-Artin stack if it is of the form |X∗| for some smooth
groupoid of derived schemes X∗.

2. A morphism between derived 1-Artin stack f : X −→ Y is smooth if there exists smooth groupoid of
derived schemes X∗ and Y∗, a morphism of groupoid objects f∗ : X∗ −→ Y∗, with f0 : X0 −→ Y0 smooth,
and such that |f∗| is equivalent to f .

The derived 1-Artin stack form a full sub-∞-category dStAr,1 ⊂ dSt which contains derived schemes (the
quotient of the constant groupoid associated to a derived scheme X gives back X). Moreover the definition
above provides a notion of smooth morphisms between derived 1-Artin stacks and the definition can thus be
extended by an obvious induction.

Definition 3.2 1. A derived stack is a derived n-Artin stack if it is of the form |X∗| for some smooth
groupoid of derived (n− 1)-Artin stacks X∗.

2. A morphism between derived n-Artin stack f : X −→ Y is smooth if there exists smooth groupoid of derived
(n − 1)-Artin stacks X∗ and Y∗, a morphism of groupoid objects f∗ : X∗ −→ Y∗, with f0 : X0 −→ Y0

smooth, and such that |f∗| is equivalent to f .
A derived stack is a derived Artin stack if it is a derived n-Artin stack for some n. The full sub-∞-category

of derived Artin stacks is denoted by dStAr.

Here are some standard examples of derived Artin stacks. More involved examples will be given later after
having stated the representability theorem 3.4.

Quotients stacks. Let G be a smooth group scheme over some base derived scheme S. We assume that G
acts on a derived scheme X → S. We can form the quotient groupoid B(X,G), which is the simplicial object
equals to X ×S Gn in degree n, and with the usual faces and degeneracies using the action of G on X and the
multiplication in G. The groupoid B(X,G) is a smooth groupoid of derived schemes over S, and its quotient
stack |B(X,G)| is thus an example of a derived Artin stack which is denoted by [X/G]. It is possible to prove
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that for a derived scheme S′ −→ S, the simpicial set MapdSt/S(S′, [X/G]) is (equivalent to) the nerve of the
∞-groupoid of diagrams of derived stacks over S endowed with G-actions

P //

��

X

��
S′ // S,

where the induced morphism [P/G] −→ S′ is moreover an equivalence (i.e. P −→ S′ is a principal G-bundle).
In the example of the derived character scheme given in §3.2, the group G acts on RMap(Γ, G), and the

quotient stack [RMap(Γ, G)/G] is now the derived Artin stack of representations of Γ in coefficients in G up
to equivalences. In the same way, RLoc(X,G) := [RLoc∗(X,G)/G] becomes the derived Artin stack of G-local
systems on the topological space X without trivialization at the base point. For higher dimensional spheres
and over k of characteristic zero we get an explicit presentation

RLoc(Sn, G) ' [SpecA/G],

where A = Symk(g∗[n− 1]) and G acts on A by its co-adjoint representation.

Eilenberg-MacLane and linear derived stacks. If G is a smooth derived group scheme over some base
derived scheme S, we have a classifying stack BG := [S/G] over S. When G is abelian the derived Artin stack
BG is again a smooth abelian group object in derived stacks. We can therefore iterate the construction and
set K(G,n) := B(K(G,n− 1)), K(G, 0) = BG. The derived stack K(G,n) is an example of a derived n-Artin
stack smooth over S. For each scheme S′ −→ S we have

πi(MapdSt/S(S′,K(G,n))) ' Hn−i
et (S′, GS′),

where GS′ is the sheaf of abelian groups represented by G on the small étale site of the derived scheme S′.
It is also possible to define K(G,n) with n < 0 by the formula K(G,n) := S ×K(G,n+1) S. With these

notations, we do have S ×K(G,n) S ' K(G,n − 1) for all n ∈ Z, and these are all derived group schemes over
S, smooth for n ≥ 0. However, K(G,n) are in general not smooth for n < 0. In the special case where G is
affine and smooth over over S a scheme of characteristic zero, K(G,n) can be described as a relative spectrum
K(G,n) ' SpecSymOS

(g∗[−n]) for n < 0 and g is the lie algebra of G over S.
A variation of the notion of Eilenberg-MacLane derived stack is the notion of linear stack associated to

perfect complexes. We let S be a derived scheme and E ∈ Lqcoh(S) be a quasi-coherent complex on S.
We define a derived stack V(E) over S as follows. For u : S′ −→ S a derived scheme we let V(E)(S′) :=
MapLqcoh(S′)(u

∗(E),OS′). This defines an ∞-functor V(E) on the ∞-category of derived schemes over S and
thus an object in dSt/S, the ∞-category of derived stacks over S. The derived stack V(E) is a derived Artin
stack over S as soon as E is a perfect OS-modules (i.e. is locally for the Zariski topology on S a compact
object in the quasi-coherent derived category, see [Toën-Vaqu1, §2.4] and [Toën-Vaqu1, SubLem. 3.9] for more
on perfect objects and derived Artin stacks). More is true, we can pull-back the relative tangent complex of
V(E) along the zero section e : S −→ V(E), and get (see §4.1 for (co)tangent complexes of derived Artin stack)
e∗(TV(E)/S) ' E∨, where E∨ is the dual of E. We thus see that V(E) −→ S is smooth if and only if E∨ is
of amplitude contained in [−∞, 0], that is if and only if E is of non-negative Tor amplitude (see [Toën-Vaqu1,
§2.4], or below for the notion of amplitude). On the other side, V(E) is a derived scheme if and only if E is of
non-positive Tor amplitude, in which case it can be written as a relative spectrum V(E) ' Spec (SymOS

(E)).
We note that when E is OS [n], then V(E) simply is K(Ga,S ,−n), where Ga,S is the additive group scheme over
S. In general, the derived stack V(E) is obtained by taking twisted forms and certain finite limits of derived
stacks of the form K(Ga,S ,−n).

Perfect complexes. We present here a more advanced and less trivial example of a derived Artin stack.
For this we fix two integers a ≤ b and we define a derived stack RPerf [a,b] ∈ dSt, classifying perfect complexes
of amplitude contained in [a, b]. As an ∞-functor it sends a derived scheme S to the ∞-groupoid (consider as a
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simplicial set by the nerve construction, see §2.1.2) of perfect objects in Lqcoh(S) with amplitude contained in
[a, b]. We remind here that the amplitude of a perfect complex E on S is contained in [a, b] if its cohomology
sheaves are universally concentrated in degree [a, b]: for all derived scheme S′ and all morphism u : S′ → S, we
have Hi(u∗(E)) = 0 for i /∈ [a, b] (this can be tested for all S′ = SpecL with L a field). The following theorem
has been announced in [Hirs-Simp], at least in the non-derived setting, and has been proved in [Toën-Vaqu1].

Theorem 3.3 The derived stack RPerf [a,b] is a derived Artin stack locally of finite presentation over SpecZ.

There is also a derived stack RPerf , classifying all perfect complexes, without any restriction on the am-
plitude. The derived stack RPerf is covered by open derived sub-stacks RPerf [a,b], and is itself an increasing
union of open derived Artin sub-stacks. Such derived stacks are called locally geometric in [Toën-Vaqu1] but
we will allow ourselves to keep using the expression derived Artin stack.

The derived stack RPerf is one of the most foundamental example of derived Artin stacks. First of all it
is a far reaching generalization of the varieties of complexes (the so-called Buchsbaum-Eisenbud varieties, see
e.g. [DeCo-Stri]). Indeed, the variety of complexes, suitably derived, can be shown to produce a smooth atlas
for the derived stack RPerf . In other words, RPerf is the quotient of the (derived) varieties of complexes
by the subtle equivalence relation identifying two complexes which are quasi-isomorphic. The fact that this
equivalence relation involves moding out by quasi-isomorphisms which is a weaker notion than isomorphisms
is responsible for the fact that RPerf is only a derived Artin stack in a higher sense. To be more precise,
RPerf [a,b] is a derived n-Artin stack where n = b − a + 1. This reflects the fact that morphisms between
complexes of amplitude in [a, b] has homotopies and higher homotopies up to degree n− 1, or equivalently that
the ∞-category of complexes of amplitude in [a, b] has (n− 1)-truncated mapping spaces.

The derived Artin stack RPerf also possesses some extension, for instance by considering perfect complexes
with an action of some nice dg-algebra, or perfect complexes over a given smooth and proper scheme. We refer
to [Toën-Vaqu1] in which the reader will find more details.

Derived stacks of stable maps. Let X be a smooth and projective scheme over the complex numbers.
We fix β ∈ H2(X(C),Z) a curve class. We consider M

pre

g,n the Artin stack of pre-stable curves of genus g an n

marked points. It can be considered as a derived Artin stack and thus as an object in dSt. We let Cg,n −→M
pre

g,n

the universal pre-stable curve. We let

RMpre
g,n(X,β) = RMapdSt/M

pre
g,n

(Cg,n, X),

be the relative derived mapping stack of Cg,n to X (with fixed class β). The derived stack RMpre

g,n(X,β) is
a derived Artin stack, as this can be deduced from the representability of the derived mapping scheme (see
§3.2). It contains an open derived Deligne-Mumford sub-stack RMg,n(X,β) which consists of stable maps. The
derived stack RMg,n(X,β) is proper and locally of finite presentation over SpecC, and can be used in order to
recovers Gromov-Witten invariant of X. We refer to [Schu-Toën-Vezz] for some works in that direction, as well
as [Toën5] for some possible application to the categorification of Gromov-Witten theory.

We now state the representability theorem of Lurie, an extremely powerful tool in order to prove that a
given derived stack is a derived Artin stack, and which is an extension to the derived setting of the famous
Artin’s representability theorem. The first proof appeared in the thesis [Luri3] and can now be found in the
series [Luri4]. There also are some variations in [Prid] and [Toën-Vezz3, App. C].

Theorem 3.4 Let k be a noetherian commutative ring. A derived stack F ∈ dStk is a derived Artin stack
locally of finite presentation over Spec k if and only if the following conditions are satisfied.

1. There is an integer n ≥ 0 such that for any underived affine scheme S over k the simplicial set F (S) is
n-truncated.

2. For any filtered system of derived k-algebras A = colimAα the natural morphism

colimαF (Aα) −→ F (A)
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is an equivalence (where F (A) means F (SpecA)).

3. For any derived k-algebra A with Postnikov tower A // . . . // A≤k // A≤k−1
// . . . // π0(A) ,

the natural morphism
F (A) −→ limkF (A≤k)

is an equivalence.

4. The derived stack F has an obstruction theory (see [Toën-Vezz3, §1.4.2] for details).

5. For any local noetherian k-algebra A with maximal ideal m ⊂ A, the natural morphism

F (Â) −→ limkF (A/mk)

is an equivalence (where Â = limA/mk is the completion of A).

We extract one important corollary of the above theorem.

Corollary 3.5 Let X be a flat and proper scheme over some base scheme S and F be a derived Artin stack
which is locally of finite presentation over S. Then the derived mapping stack RMapdSt/S(X,F ) is again a
derived Artin stack locally of finite presentation over S.

3.4 Derived geometry in other contexts

The formalism of derived schemes and derived Artin stacks we have described in this section admits several
modifications and generalizations that are worth mentioning.

Characteristic zero. When restricted to zero characteristic derived algebraic geometry admits a slight
conceptual simplification due to the fact that the homotopy theory of simplicial commutative Q-algebras become
equivalent to the homotopy theory of non-positively graded commutative dg-algebras over Q. This fact can be
promoted to an equivalence of ∞-categories

N : sCommQ ' cdga≤0
Q ,

induced by the normalization functor N . The normalization functor N , from simplicial abelian groups to
cochain complexes sitting in non-positive degrees has a lax symmetric monoidal structure given by the so-called
Alexander-Whithney morphisms (see [Ship-Schw]), and thus always induces a well defined ∞-functor

N : sComm −→ cdga≤0
Z .

This ∞-functor is not an equivalence in general but induces an equivalence on the full sub-∞-categories of
Q-algebras.

The main consequence is that the notions of derived schemes, and more generally of derived Artin stacks,
when restricted over SpecQ, can also be modelled using commutative dg-algebras instead of simplicial com-
mutative rings: we can formally replace sComm by cdga≤0

Q in all the definitions and all the constructions,
and will obtain a theory of derived Q-schemes and derived Artin stacks over Q equivalent to the one we have
already seen. This simplifies a bit the algebraic manipulation at the level of derived rings. For instance, the
free commutative dg-algebras are more easy to understand than free simplicial commutative algebras, as the
later involves divided powers (see e.g. [Fres]). One direct consequence is that explicit computations involving
generators and relations tend to be more easily done in the dg-algebra setting. A related phenomenon concerns
explicit models, using model category of commutative dg-algebras for example. The cofibrant commutative
dg-algebras are, up to a retract, the quasi-free commutative dg-algebras (i.e. free as graded, non-dg, algebras),
and are more easy to understand than their simplicial counterparts.

The reader can see derived algebraic geometry using dg-algebras in action for instance in [Brav-Buss-Joyc,
Boua-Groj, Pant-Toën-Vaqu-Vezz].
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E∞-Algebraic geometry. The theory of derived rings sComm can be slightly modified by using other
homotopical notions of the notion of rings. One possibility, which have been explored in [Luri4, Toën-Vezz3],
is to use the ∞-category of E∞-algebras (or equivalently HZ-algebras) instead of ∞-category of simplicial
commutative rings. The ∞-category E∞ − dga≤0, of non-positively graded E∞-dg-algebras (over Z), behaves
formally very similarly to the ∞-category sComm. It contains the category of commutative rings as a full
sub-∞-category of 0-truncated objects, and more generally a given E∞-dg-algebra has a Postnikov tower as for
the case of commutative simplicial rings, whose stage are also controlled by a cotangent complex. Finally, the
normalization functor induces an ∞-functor

N : sComm −→ E∞ − dga≤0.

The ∞-functor is not an equivalence, expect when restricted to Q-algebras again. Its main failure of being
an equivalence is reflected in the fact that it does not preserve cotangent complexes in general. To present
things differently, simplicial commutative rings and E∞-dg-algebras are both generated by the same elementary
pieces, namely commutative rings, but the manner these pieces are glued together differs (this is typically what
is happening in the Postnikov towers).

As a consequence, there is a very well established algebraic geometry over E∞-dg-algebras, which is also
a natural extension of algebraic geometry to the homotopical setting, but it differs from the derived algebraic
geometry we have presented. The main difference between the two theories can be found in the notion of
smoothness: the affine line over SpecZ is smooth as a derived scheme but it is not smooth as an E∞-scheme
(simply because the polynomial ring Z[T ] differs from the free E∞-ring on one generator in degree 0, the later
involving homology of symmetric groups has non-trivial cohomology). Another major difference, derived alge-
braic geometry is the universal derived geometry generated by algebraic geometry (this sentence can be made
into a mathematical theorem, expressing a universal property of dSch), whereas E∞-algebraic geometry is not.
From a general point of view, E∞-algebraic geometry is more suited to treat questions and problems of topologi-
cal origin and derived algebraic geometry is better suited to deal with questions coming from algebraic geometry.

Spectral geometry. Spectral geometry is another modification of derived algebraic geometry. It is very
close to E∞-algebraic geometry briefly mentioned above, and in fact the E∞ theory is a special case of the
spectral theory. This time it consists of replacing the ∞-category sComm with SpComm, the ∞-category
of commutative ring spectra. This is a generalization of E∞-algebra geometry, which is recovered as spectral
schemes over SpecHZ, where HZ is the Eilenberg-McLane ring spectrum. Spectral geometry is mainly devel-
oped in [Luri4] (see also [Toën-Vezz3, §2.4]), and has found an impressive application to the study of topological
modular forms (see [Luri5]).

Homotopical algebraic geometry. Homotopical algebraic geometry is the general form of derived alge-
braic geometry, E∞-algebraic geometry and spectral geometry. It is a homotopical version of relative geometry
of [Haki], for which affine schemes are in one-to-one correspondence with commutative monoids in a base sym-
metric monoidal model category (or more generally a symmetric monoidal ∞-category). Most of the basic
notions, such schemes, the Zariski, etale or flat topology, Artin stacks . . . have versions in this general setting.
This point of view is developed in [Toën-Vezz3] as well as in [Toën-Vaqu2], and makes possible to do geometry
in non-additive contexts.

Derived analytic geometries. Finally, let us also mention the existence of analytic counter-parts of de-
rived algebraic geometry, but which are out of the scope of this paper. We refer to [Luri4] in which derived
complex analytic geometry is discussed.

4 The formal geometry of derived stacks

As we have seen any derived scheme X, or more generally a derived Artin stack, has a truncation t0(X) and
a natural morphism j : t0(X) −→ X. We have already mentioned that X behaves like a formal thickening of
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t0(X), and in a way the difference between derived algebraic geometry and algebraic geometry is concentrated
at the formal level. We explore this furthermore in the present section, by explaining the deep interactions
between derived algebraic geometry and formal/infinitesimal geometry.

4.1 Cotangent complexes and obstruction theory

In §3.1 we have seen that any derived scheme X possesses a cotangent complex LX . We will now explain how
this notion extends to the more general setting of derived Artin stacks, and how it controls obstruction theory.

Let X be a derived Artin stack. We define its quasi-coherent derived ∞-category Lqcoh(X) by integrating
all quasi-coherent derived ∞-categories of derived schemes over X. In a formula

Lqcoh(X) := lim
S∈dSch/X

Lqcoh(S),

where the limit is taken along the ∞-category of all derived schemes over X. By using descent, we could also
restrict to affine derived scheme over X and get an equivalent definition.

We define the cotangent complex of X in a similar fashion as for derived schemes. For M ∈ Lqcoh(X), with
cohomology sheaves concentrated in non-positive degrees, we set X[M ], the trivial square zero infinitesimal
extension of X by M . It is given by the relative spectrum X[M ] := Spec (OX ⊕M). The object X[M ] sits
naturally under X, by means of the augmentation OX ⊕M −→ OX . The cotangent complex of X is the object
LX ∈ Lqcoh(X) such that for all M ∈ Lqcoh(X) as above, we have functorial equivalences

MapX/dSt(X[M ], X) 'MapLqcoh(X)(LX ,M).

The existence of such the object LX is a theorem, whose proof can be found in [Toën-Vezz3, Cor. 2.2.3.3].
Cotangent complexes of derived Artin stacks behave similarly to the case of derived schemes: functoriality

and stability by base-change. In particular, for a morphism between derived Artin stacks f : X −→ Y , we
define the relative cotangent complex Lf ∈ Lqcoh(X) has being the cofiber of the morphism f∗(LY ) → LX .
The smooth and étale morphisms between derived Artin stacks have similar characterizations using cotangent
complexes (see [Toën-Vezz3, §2.2.5]). A finitely presented morphism f : X → Y between derived Artin stacks
is étale if and only if the relative cotangent complex Lf vanishes. The same morphism is smooth if and only if
the relative cotangent complex Lf has positive Tor amplitude.

We note here that cotangent complexes of derived Artin stacks might not be themselves cohomologically
concentrated in non-positive degrees. It is a general fact that if X is a derived n-Artin stack, in the sense of
the inductive definition 3.2, then LX is cohomologically concentrated in degree ] − ∞, n]. This can be seen
inductively by using groupoid presentations as follows. Suppose that X is the quotient of a smooth groupoid in
derived (n− 1)-Artin stacks X∗. We consider the unit section e : X0 −→ X1, as well as the natural morphism
X1 −→ X0 ×X0. We get a morphism of quasi-coherent complexes on X0

LX0 ' e∗(LX0×X0/X0
) −→ e∗(LX1/X0

),

which is the infinitesimal action of X1 on X0. The fiber of this map is π∗(LX), where π : X0 −→ |X∗| ' X is
the natural projection. This provides an efficient manner to understand cotangent complexes of derived Artin
stack by induction using presentations by quotient by smooth groupoids.

Let Y = SpecA be an affine derived scheme and M ∈ Lqcoh(Y ) ' L(A) a quasi-coherent complexes
cohomologically concentrated in strictly negative degrees. A morphism d : LY −→M in Lqcoh(Y ) corresponds
to a morphism (id, d) : A −→ A⊕M of derived rings augmented to A. We let A⊕dM [−1] be the derived ring
defined by the following cartesian square in sComm

A⊕dM [−1] //

��

A

(id,d)

��
A

(id,0)
// A⊕M,
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and Yd[M [−1]] = Spec (A ⊕d M [−1]) be the corresponding affine derived scheme. It comes equipped with a
natural morphism Y −→ Yd[M [−1]], which by definition is the square zero extension of Y by M [−1] twisted by
d.

Assume now that X is a derived Artin stack, and consider the following lifting problem. We assume given
a morphism f : Y −→ X, and we consider the space of all possible lifts of f to Yd[M [−1]]

L(f,M, d) := MapY/dSt(Yd[M [−1]], X).

The next proposition subsumes the content of the derived algebraic geometry approach to obstruction theory
(see [Toën-Vezz3, §1.4.2]).

Proposition 4.1 With the above notations there is a canonical element o(f,M, d) ∈ Ext0(f∗(LX),M) such
that o(f,M, d) = 0 if and only if L(f,M, d) is non-empty. Moreover, if o(f,M, d) = 0 then the simplicial set
L(f,M, d) is a torsor over the simplicial abelian group MapLqcoh(Y )(f

∗(LX),M [−1]).

A key feature of derived algebraic geometry is that the element o(f,M, d) is functorial in X and in M . It
can also be generalized to the case where Y is no more affine and is itself a derived Artin stack.

The proposition 4.1 is an extremely efficient tool in under to understand the decomposition of the mapping
spaces between derived schemes and derived Artin stacks obtained by Postnikov decomposition. For this, let
X and Y two derived Artin stack, and let t≤n(X) and t≤n(Y ) be their Postnikov truncations. It can be shown
that for each n the natural morphism t≤n(X) −→ t≤n+1(X) is of the form

t≤n(X) −→ t≤n(X)d[πn+1(X)[n+ 1]],

for some map d : Lt≤n(X) −→ πn+1(X)[n + 2] (so here M = πn+1(X)[n + 2]). From this we deduce the shape
of the fibers of the morphism of spaces

MapdSt(t≤n+1(X), Y ) −→MapdSt(t≤n(X), Y ).

For each f : t≤n(X) −→ Y , there is an obstruction element o(f, n) ∈ Extn+2(f∗(LY ), πn+1(X)), vanishing
precisely when f lifts to a morphism from the next stage of the Postnikov tower t≤n+1(X). Moreover, when such
a lift exists, the space of all lifts is, non-canonically, equivalent to Map(f∗(LY ), πn+1(X)[n+ 1]). In particular,
if non-empty, the equivalence classes of lifts are in one-to-one correspondence with Extn+1(f∗(LY ), πn+1(X)).

One immediate consequence is the following co-connectivity statement: if X is an n-truncated derived Artin
stack, X = t≤n(X), and if Y is a derived m-Artin stack (see definition 3.2), then MapdSt(X,Y ) is an (n+m)-
truncated simplicial set.

4.2 The idea of formal descent

Because the ∞-category dSt of derived stacks is an ∞-topos all the epimorphisms between derived stacks are
effective (see [Toën-Vezz2, Thm. 4.9.2 (3)]). One instance of this fact is for a smooth and surjective morphism
of derived schemes (more generally of derived Artin stacks) f : X −→ Y : the object Y ∈ dSt can be recovered
by the following formula

Y ' |N(f)|,

where N(f) is the nerve of the morphism f , that is the simplicial object [n] 7→ X×Y X×Y · · ·×Y X, and |N(f)|
is the colimit of the simplicial object N(f).

Derived algebraic geometry proposes another form of the descent property in a rather unusual context,
namely when f is now a closed immersion of schemes. This descent for closed immersions goes back to some
fundamental results of Carlsson concerning completions in stable homotopy theory (see [Carl]) and is more
subtle than the smooth descent just mentioned. It is however an extremely nice and characteristic property of
derived algebraic geometry which do not have any underived counterpart.
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We let f : X −→ Y be a closed immersion of locally noetherian (underived) schemes. We let ŶX be the
formal completion of Y along X. From the functorial point of view it is defined as the ∞-functor on the ∞-
category of derived rings as follows. For a derived ring R we let Rred := π0(R)red, the reduced ring obtained
from π0(R). The ∞-functor ŶX is then defined by the formula

ŶX(R) := Y (R)×Y (Rred) X(Rred).

As such, ŶX is a subobject of Y because the morphism X(Rred) −→ Y (Rred) is an injective map of sets. As a
stack, ŶX is representable by a formal scheme, namely the formal completion of Y along X.

To the map f , we can form its nerve N(f). This is the simplicial object in derived schemes obtained by taking
the multiple fiber products of X over Y . In degree n, N(f) is the n+1-fold fibered product X×Y X×Y · · ·×Y X.
The simplicial diagram of derived schemes N(f) comes equipped with an augmentation to Y which naturally
factors through the subobject ŶX . The following theorem is a direct re-interpretation of [Carl, Thm. 4.4].

Theorem 4.2 The augmentation morphism N(f) −→ ŶX exhibits ŶX as the colimit of the diagram N(f) inside
the ∞-category of derived schemes: for any derived scheme Z we have an equivalence

MapdSt(ŶX , Z) ' lim
[n]∈∆

MapdSch(N(f)n, Z).

The above statement possesses a certain number of subtleties. First of all the noetherian hypothesis is
necessary, already in the affine case. Another subtle point, which differs from the smooth descent we have
mentioned, is that the colimit of N(f) must be taken inside the ∞-category of derived schemes. The statement
is wrong if the same colimit is considered in the ∞-category of derived stacks for a simple reason: it is not true
that any morphism S −→ ŶX factors locally for the étale topology through f : X −→ Y . Finally, the possible
generalizations of this statement to the setting of derived schemes and derived Artin stacks require some care
related to the size of the derived structures sheaves. We refer to [Gait1, §2.3] for more about formal completions
in the general context of derived Artin stacks.

On simple but instructing example of theorem 4.2 in action is the case where f is a closed point inside a
smooth variety Y over a field k, x : Spec k −→ Y. The nerve of x can be computed using Koszul resolutions
obtained from the choice of a system of local parameters at x on Y . This gives

N(x)n ' SpecA⊗n,

where A = Symk(V [1]), where V = Ω1
V,x is the cotangent space of Y at x. Functions on the colimit of

the simplicial derived scheme N(x) is the the limit of the cosimplicial object n 7→ Symk(V n[1]), which can be

identified with ̂Symk(V ), the completed symmetric algebra of V , or equivalently with the formal local ring OV,x.
It is interesting to note here that the limit of the co-simplicial diagram n 7→ Symk(V n[1]) lies in the wrong
cadrant and thus involves a non-converging spectral sequence a priori. This non-convergence is responsible for

the completion of the symmetric algebra ̂Symk(V ) as a final result.
The case of a closed point x : Spec k −→ Y , for Y a scheme of finite type over k, possesses also an

interpretation in terms of classifying spaces of derived group schemes. This point of view, more topological,
makes a clear link between derived algebraic geometry and algebraic topology. The basic observation here is
that the nerve N(x) is the nerve of a derived group scheme ΩxY = k×Y k, called the based derived loop group
of Y at x. A reformulation of theorem 4.2 is the existence of an equivalence of formal schemes

B(ΩxY ) ' Spf ÔY,x = Ŷx,

or equivalently that Ŷx is a classifying object inside formal schemes for the derived group scheme ΩxY . This
last equivalence should be understood as an geometrico-algebraic version of the well known fact in homotopy
theory, recovering a connected component of a topological space Y containing a point x ∈ Y as the classifying
space of ΩxY , the based loop group of Y .
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As a final comment, the theorem 4.2 has also a another interpretation in terms of derived de Rham theory
of X relative to Y . It is a special case of a more general theorem relating derived de Rham cohomology
and algebraic de Rham cohomology in characteristic zero (see [Bhat1]), which itself possesses p-adic and finite
characteristic versions (see [Bhat2]).

4.3 Tangent dg-lie algebras

We assume now that k is a base commutative ring of characteristic zero, and we work in dStk, the∞-category of
derived stacks over k. For a derived Artin stack X locally of finite presentation over k, we have seen the existence
of a cotangent complex LX/k ∈ Lqcoh(X). Because X is locally of finite presentation over k the complex LX/k
is perfect and can be safely dualized to another perfect complex TX/k := L∨X/k, called the tangent complex.
The cotangent complex LX/k controls obstruction theory for X, but we will see now that TX/k comes equipped
with an extra structure of a (shifted) lie algebra over X, which controls, in some sense, the family of all formal
completions of X taken at various points. The existence of the Lie structure on TX/k[−1] has been of a folklore
idea for a while, with various attempts of construction. As an object in the non-∞ derived category Dqcoh(X),
and for X a smooth variety, this Lie structure is constructed in [Kapr, Thm. 2.6] (see also [Cala-Cald-Tu] for
a generalization). More general approaches using derived loop spaces (see our next paragraph §4.4) appear in
[BenZ-Nadl]: TX/k[−1] is identified with the Lie algebra of the derived loop stack L(X) −→ X, but assume
that the relations between lie algebras and formal groups extend to the general setting of derived Artin stack
(which is today not yet fully established). The very first general complete construction appeared recently in
[Henn], following the general strategy of [Luri1]. The main result of [Henn] can be subsumed in the following
theorem.

Theorem 4.3 With the above conditions and notations, there is a well defined structure of an OX-linear Lie
algebra structure on TX/k[−1]. Moreover, any quasi-coherent complex M ∈ Lqcoh(X) comes equipped with a
canonical action of TX/k[−1].

It is already noted in [Kapr] that the Lie algebra TX/k[−1] is closely related to the geometry of the diagonal
map X −→ X×X, but a precise statement would require a further investigation of the formal completions in the
setting of derived Artin stacks (see [Gait1, S 2.3]). However, it is possible to relate TX/k[−1] with the various
formal moduli problems represented by X at each of its points. For this, let x : Spec k −→ X be a global point,
and let lx := x∗(TX/k[−1]), which is a dg-lie algebra over k. By the main theorem of [Luri1], lx determines
a unique ∞-functor Fx : dgart∗k −→ S, where dgart∗k is the ∞-category of locak augmented commutative
dg-algebras over k with finite dimensional total homotopy (also called artinian commutative dg-algebras over
k). This ∞-functor possesses several possible description, one of them being very well known involving spaces
of Mauer-Cartan elements. For each A ∈ dgart∗k let mA be the kernel of the augmentation A −→ k, and let
us consider the space MC(lx ⊗k mA), of Mauer-Cartan elements in the dg-lie algebra lx ⊗k mA (see [Hini] for
details). One possible definition for Fx is Fx(A) = MC(lx ⊗k mA).

It can be checked that Fx defined as above is equivalent to the formal completion X̂x of X at x defined as
follows. The ∞-functor X̂x simply is the restriction of the derived stack X as an ∞-functor over dgart∗k, using
x as a base point: for all A ∈ dgart∗k we have

X̂x(A) := X(A)×X(k) {x}.

The equivalence Fx ' X̂x can be interpreted as the statement that the dg-lie algebra lx does control the formal
completion of X at x. As lx is the fiber of the sheaf of Lie algebras TX/k[−1], it is reasonable to consider

that TX/k[−1] encodes the family of formal completions X̂x, which is a family of formal moduli problems
parametrized by X. The total space of this family, which is still undefined in general, should of course be the
formal completion of X ×X along the the diagonal map.

In the same way, for an object M ∈ Lqcoh(X), the TX/k[−1]-dg-module structure on M of theorem 4.3 can
be restricted at a given global point x : Spec k −→ X. It provides an lx-dg-module structure on the fiber x∗(M),
which morally encodes the restriction of M over X̂x, the formal completion of X at x.
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At a global level, the Lie structure on TX/k[−1] includes a bracket morphism in Lqcoh(X)

[−,−] : TX/k[−1]⊗OX
TX/k[−1] −→ TX/k[−1],

and thus a cohomology class αX ∈ H1(X,LX/k⊗OX
End(TX/k)). In the same way, a quasi-coherent module M ,

together with its TX/k[−1]-action provides a class αX(M) ∈ H1(X,LX/k⊗OX
End(M)). It is strongly believed

that the class αX(M) is the Atiyah class of M , thought the precise comparison is under investigation and not
established yet.

4.4 Derived loop spaces and algebraic de Rham theory

We continue to work over a base commutative ring k of characteristic zero.

Let X be a derived Artin stack locally of finite presentation over k. We let S1 := BZ, the simplicial circle
considered as a constant derived stack S1 ∈ dStk.

Definition 4.4 The derived loop stack of X (over k) is defined by

LX := RMap(S1, X) ∈ dStk,

the derived stack of morphisms from S1 to X.

The derived loop stack LX is an algebraic counter-part of the free loop space appearing in string topology.
Intuitively it consists of infinitesimal loops in X and encodes many of the de Rham theory of X, as we will
going to explain now.

The constant derived stack S1 can be written a push-out S1 ' ∗
∐
∗
∐
∗

∗, which implies the following simple

formula for the derived loop stack
LX ' X ×X×X X,

from which the following descriptions of derived loop stacks follows.

• If X = SpecA is an affine derived scheme (over k), then so is LX and we have

LX ' Spec (A⊗A⊗kA A).

• For any derived scheme X over k the natural base point ∗ ∈ S1 = BZ provides an affine morphism of
derived schemes π : LX −→ X. The affine projection π identifies LX with the relative spectrum of the
symmetric algebra SymOX

(LX/k[1]) (see [Toën-Vezz5])

LX ' Spec (SymOX
(LX/k[1])).

• Let X be a (non-derived) Artin stack (e.g. in the sense of [Arti]), considered as an object X ∈ dStk.
Then the truncation t0(LX) is the so-called inertia stack of X (also called twisted sectors) which classifies
objects endowed with an automorphism. The derived stack LX endows this inertia stack with a canonical
derived structure.

• For X = BG, for G a smooth group scheme over k, we have LBG ' [G/G], where G acts by conjugation
on itself. More generally, for a smooth group scheme G acting on a scheme X, we have

L[X/G] ' [Xts/G],

where Xts is the derived scheme of fixed points defined as derived fiber product Xts := (X×G)×X×XX.
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The first two properties above show that the geometry of the derived loop scheme LX is closely related to
differential forms on the derived scheme X. When X is no more a derived scheme but a derived Artin stack
some close relations still hold but is more subtle. However, using descent for forms (see proposition 5.1) it is
possible to see the existence of a natural morphism

H(LX,OLX) −→ H(X,SymOX
(LX/k[1])) ' H(X,⊕p(∧pLX/k)[p]).

The interrelations between derived loop stacks and differential forms become even more interesting when
LX is considered equipped with the natural action of the group S1 = BZ coming from the S1-action on itself
by translation. In order to explain this we first need to remind some equivalences of∞-categories in the context
of mixed and S1-equivariants complexes.

It has been known for a while that the homotopy theory of simplicial k-modules endowed with an S1-action
is equivalent to the homotopy theory of non-positively graded mixed complexes. This equivalence, suitably
generalized, provide an equivalence between the ∞-category of commutative simplicial rings with an S1-action,
and the ∞-category of non-positively graded mixed commutative dg-algebras (see [Toën-Vezz5]). To be more
precise, we let S1 − sCommk := Fun∞(BS1, sCommk), the the ∞-category of derived rings over k together
with an action of S1, where BS1 is the ∞-category with a unique object and S1 as its simplicial monoid of
endomorphisms. On the other hand, we set k[ε] be the dg-algebra over k generated by a unique element ε
in degree −1 and satisfying ε2 = 0. The dg-algebra k[ε] can be identified with the homology algebra of the
circle H∗(S

1) (with the algebra structure induced from the group structure on S1). The category of dg-modules
over k[ε] is, by definition and observation, the category of mixed complexes. The category k[ε] −Mod comes
equipped with a symmetric monoidal structure induced from the natural cocommutative bi-dg-algebra structure
on k[ε]. The commutative monoids in k[ε] −Mod are called mixed commutative dg-algebras, and consists of a
commutative dg-algebra A over k together with a k-derivation ε : A −→ A[−1] of cohomological degree −1. By
localization along the quasi-isomorphisms, the mixed commutative dg-algebras form an ∞-category ε− cdgak,
and we restrict to its full sub-∞-category ε− cdga≤0

k ⊂ ε− cdgak consisting of non-positively graded objects.
The normalization functor, from simplicial modules to non-positively graded complexes, is shown in [Toën-Vezz5]

to naturally extend to an equivalence of ∞-categories

φ : S1 − sCommk ' ε− cdga≤0
k .

This equivalence is not a formal result, and is achieved through a long sequence of equivalences between aux-
iliaries ∞-categories. One possible interpretation of the existence of the equivalence φ is the statement that
the Hopf dg-algebra C∗(S

1, k), of chains on S1, is formal (i.e. quasi-isomorphic to its cohomology). The non-
formal nature of the equivalence φ can also be seen in the following result, which is a direct consequence of
its existence. Let A ∈ sCommk be a derived ring over k, and denote by A again the commutative dg-algebra
obtained out of A by normalization. Then S1 ⊗k A defines an object in S1 − sCommk, where S1 acts on itself
by translation. The dg-algebra A, also possesses a de Rham complex DR(A/k) = SymA(LA[1]), which is an

object in ε − cdga≤0
k for which the mixed structure is induced by the de Rham differential. Then we have

φ(S1⊗A) ' DR(A/k), and this follows directly from the existence of φ and the universal properties of the two
objects S1 ⊗A and DR(A/k). Globally, on a general derived scheme, this result reads as below.

Proposition 4.5 (See [Toën-Vezz5]) Let X be a derived scheme over k, and LX = RMapdStk
(S1, X) be its

derived loop scheme over k, endowed with its natural action of S1. Then, there is an equivalence of stacks of
mixed commutative dg-algebras over X

φ(OLX) ' DR(OX/k),

where DR(OX/k) := SymOX
(LX/k[1]), with the mixed structure induced by the de Rham differential.

When X is no more a derived scheme but rather a derived Artin stack the proposition above fails, simply
because X 7→ H(LX,OLX) does not satisfy descent for smooth coverings. However, the equivalence above
can be localized on the smooth topology in order to obtain an analogous result for derived Artin stacks, for
which the left hand side is replaced by a suitable stackification of the construction X 7→ OLX . In some cases,
for instance for smooth Artin stacks with affine diagonal, this stackification can be interpreted using modified
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derived loop stack, such as the formal completion of the derived loop stack (see for instance [BenZ-Nadl]). A
general corollary of proposition 4.5 is the following, concerning S1-invariants functions on derived loop stacks.

Corollary 4.6 Let X be a derived Artin stack over k and LX be its derived loop stack over k.

1. There exists a morphism of complexes of k-modules

φ : H(LX,OLX)S
1

−→ H
Z/2
DR (t0(X)/k)

where H
Z/2
DR (t0(X)/k) is the 2-periodic de Rham cohomology of the truncation t0(X) of X.

2. If X is a quasi-compact and quasi-separated derived scheme, then the morphism φ induces an equivalence

φ : H(LX,OLX)S
1

[β−1] ' HZ/2
DR (t0(X)/k).

In the corollary above, the de Rham cohomology H
Z/2
DR (t0(X)/k) is simply defined by the cohomology of

t0(X) with coefficients in the 2-periodized algebraic de Rham complex (in the sense of [Hart]). It can also
be computed using the (negative) periodic cyclic of the derived stack X. In the second point, we use that

kS
1 ' k[β], whith β in degree 2, acts on (homotopy) fixed points of S1 on any S1-equivariant complex.

The above corollary can be used for instance to provide a new interpretation of the Chern character with
coefficients in de Rham cohomology. Indeed, for a derived Artin stack X over k, and E a vector bundle on X, or
more generally a perfect complex on X, the pull-back π∗(E) on the derived loop stack LX possesses a natural
automorphism αE , obtained as the monodromy operator along the loops. The formal existence of αE follows
from the fact that the projection π : LX −→ X, as morphism in the ∞-category of derived stacks, possesses a
self-homotopy given by the evaluation map S1 × LX −→ X. This self-homotopy induces an automorphism of
the pull-back ∞-functor π∗.

The automorphism αE is another incarnation of the Atiyah classe of E, and its trace Tr(αE), as a function
on LE, can be shown to be naturally fixed by the S1-action. This S1-invariance is an incarnation of the well
known cyclic invariance of traces, but its conceptual explanation is a rather deep phenomenon closely related to
fully extended 1-dimensional topological field theories in the sense of Lurie (see [Toën-Vezz6] for details). The

trace Tr(αE) therefore provides an element in H(LX,OLX)S
1

. It is shown in [Toën-Vezz6, App. B], as least

when X is a smooth and quasi-projective k-scheme, that φ(Tr(αE)) ∈ HZ/2
DR (X/k) is the Chern character of E

in algebraic de Rham cohomology.

The above interpretation of de Rham cohomology classes in terms of S1-equivariant functions on the derived
loop stack possesses a categorification relating quasi-coherent and S1-equivariant sheaves on derived loop stacks
and D-modules. This relation is again a direct consequence of the proposition 4.5 and can be stated as follows.

Corollary 4.7 Let X be a smooth Artin stack locally of finite presentation over k and LX be its derived loop
stack over k.

1. There exists a natural ∞-functor

φ : LS
1

qcoh(LX) −→ L
Z/2
qcoh(DX/k)

where L
Z/2
qcoh(DX/k) is the 2-periodic derived ∞-category of complexes of DX/k-modules with quasi-coherent

cohomologies.

2. If X is moreover a quasi-compact and quasi-separated smooth scheme over k, then the morphism φ induces
an equivalence

φ : LS
1

coh(LX)[β−1] ' LZ/2
coh(DX/k).
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In the above corollary LS
1

qcoh(LX) denotes the S1-equivariant quasi-coherent derived ∞-category of LX,

which can be defined for instance as the ∞-category of S1-fixed points of the natural S1-action on Lqcoh(LX).

The symbol LS
1

coh(LX) denotes the full sub-∞-category of LS
1

qcoh(LX) consisting of bounded coherent objects (E

with π∗(E) coherent on X), and L
Z/2
coh(DX/k) consists of 2-periodic complexes of DX/k-modules with coherent

cohomology (as sheaves of DX/k-modules). Finally, LS
1

coh(LX) is an∞-category which comes naturally enriched

over LS
1

coh(k) ' Lperf (k[β]), which allows to localize along β. We refer to [BenZ-Nadl] for more details about
the objects involved in the corollary 4.7, as well as for possible generalizations and modifications (e.g. for the
non-periodic version).

To finish this paragraph, we mention that the interpretation of the chern character as the trace of the
universal automorphism on LX can be also categorified in an interesting manner. Now, we start with a stack
of dg-cateories T over X (see [Toën3, Toën-Vezz6]), which is a categorification of a quasi-coherent sheaf. The
pull-back of T over LX also possesses a universal automorphism αT , which itself has a well defined trace.
This trace is no more a function but rather is a quasi-coherent sheaf on LX, which also turns out to carry
a natural S1-equivariant structure. It is therefore an object in LS

1

qcoh(LX), and by the corollary 4.7 its image
by φ becomes a 2-periodic DX/k-module over X. This DX/k-module must be interpreted as the family of
periodic homology of the family T , endowed with a non-commutative version of the Gauss-Manin connection
(see [Toën-Vezz6]). This is the first step in the general construction of variations of non-commutative Hodge
structures in the sense of [Katz-Kont-Pant] and is a far reaching generalization of the non-commutative Gauss-
Manin connection constructed on flat families of algebras in [Tsyg]. In the same way that the Chern character
of perfect complexes can be understood using 1-dimensional fully extended TQFT in the sense of Lurie, this
non-commutative Gauss-Manin connection, which is a categorification of the Chern character, can be treated
using 2-dimensional fully extended TQFT’s.

5 Symplectic, Poisson and Lagrangian structures in the derived set-
ting

At the end of the section §4 we have seen the relations between derived loop stacks and algebraic de Rham
theory. We now present further materials about differential forms on derived Artin stacks, and introduce the
notion of shifted symplectic structure. We will finish the section by some words concerning the dual notion of
shifted Poisson structures, and its possible importance for deformation quantization in the derived setting.

All along this section k will be a base noetherian commutative ring, assumed to be of characteristic zero.

5.1 Forms and closed forms on derived stacks

Let X be a derived Artin stack locally of finite presentation over k. We have seen in §4.1 that X admits a
(relative over k) cotangent complex LX/k, which is the derived version of the sheaf of 1-forms. For p ≥ 0, the
complex of p-forms on X (relative to k) can be naturally defined as follows

Ap(X) := H(X,∧pOX
LX/k).

By definition, for n ∈ Z, a p-form of degree n on X is an element in Hn(Ap(X)), or equivalently an element
in Hn(X,∧pOX

LX/k). When X is smooth over k, all the perfect complexes ∧pOX
LX/k have non-negative Tor

amplitude, and thus there are no non-zero p-forms of negative degree on X. In a dual manner, if X is an
affine derived scheme, then X does not admit any non-zero p-form of positive degree. This is not true anymore
without these hypothesis, and in general a given derived Artin stack might have non-zero p-forms of arbitrary
degrees.

An important property of forms on derived Artin stacks is the smooth descent property, which is a powerful
computational tool as we will see later on with some simple examples. It can be stated as the following
proposition.
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Proposition 5.1 Let X be a derived Artin stack over k (locally of finite presentation by our assumption), and
let X∗ be a smooth Segal groupoid in derived Artin stack whose quotient |X∗| is equivalent to X (see §3.3).
Then, for all p ≥ 0, the natural morphism

Ap(X) −→ lim
[n]∈∆

Ap(Xn)

is an equivalence (in the ∞-category of complexes).

Here are two typical examples of complexes of forms on some fundamental derived stacks.

Forms on classifying stacks, and on RPerf. We let G be a smooth group scheme over Spec k, and X =
BG be its classifying stack. The cotangent complex of X is g∨[−1], where g is the Lie algebra of G, considered
as a quasi-coherent sheaf on BG by the adjoint representation. We thus have ∧pOX

LX/k ' Symp
k(g∨)[−p],

and the complex of p-forms on X is then the cohomology complex H(G,Symp
k(g∨))[−p], of the group scheme

G with values in the representation Symp
k(g∨). When G is a reductive group scheme over k, its cohomology

vanishes and the complex of p-forms reduces to Symp
k(g∨)G[−p], the G-invariant symmetric p-forms on g sitting

in cohomological degree p. In other words, when G is reductive, there are no non-zero p-forms of degree n 6= p
on X, and p-forms of degree p are given by Symp

k(g∨).
We let X = RPerf be the derived stack of perfect complexes (see theorem 3.3) The cotangent complex

LX/k has the following description. There is a universal perfect complex E ∈ Lqcoh(X), and we have LX/k '
End(E)[−1], where End(E) = E⊗OX

E∨ is the stack of endomorphisms of E . We obtain the following description
of the complex of p-forms on the derived stack RPerf

Ap(RPerf) ' H(RPerf , SymORPerf
(End(E)))[−p].

Forms on a derived quotient stack. Let G be a reductive smooth group scheme over k acting on an
affine derived scheme Y = SpecA, and let X := [Y/G] be the quotient derived stack. The cotangent complex
LX/k, pulled back to Y , is given by the fiber L of the natural morphism ρ : LY/k −→ OY ⊗k g∨, dual to the
infinitesimal action of G on Y . The group G acts on Y and on the morphism above, and thus on L. The
complex of p-forms on X is then given by Ap(X) ' (∧pL)G. Concretely, the fiber of the morphism ρ can be
described as the complex LY/k⊕ (OY ⊗k g∨[−1]) endowed with a suitable differential coming from the G-action
on Y . The complex of p-forms Ap(X) can then be described as

Ap(X) '

 ⊕
i+j=p

(∧iALA)⊗k Symj
k(g∨)[−j]

G

,

again with a suitable differential.

We now define closed p-forms on derived Artin stacks. For this we start to treat the affine case and then
define the complex of closed p-forms on a derived stack X by taking a limit over all affine derived schemes
mapping to X.

Let A be a derived ring over k, and N(A) ∈ cdga≤0
k be its normalization, which is a non-positively graded

commutative dg-algebra over k. We let A′ be a cofibrant model for A and we consider Ω1
A′ the A′-dg-module of

Kälher differential over A′ over k (see e.g. [Behr, Pant-Toën-Vaqu-Vezz]). Note that under the equivalence of
∞-categories L(N(A)) ' L(A′), the object Ω1

A′ can be identified with LA/k, the cotangent complex of A over
k. We set ΩiA′ := ∧iA′Ω1

A′ for all i ≥ 0. As for the case of non-dg algebras, there is a de Rham differential
dR : ΩiA′ −→ Ωi+1

A′ , which is a morphism of complexes of k-modules and satisfies dR2 = 0. The differential
dR is also characterized by the property that it endows SymA′(Ω

1
A′ [1]) with a structure of a graded mixed

commutative dg-algebra, which coincides with the universal derivation A′ −→ Ω1
A′ in degree 1.

We define a complex of k-modulesAp,cl(A), of closed p-forms over A (relative to k) as follows. The underlying
graded k-module is given by

Ap,cl(A) :=
∏
i≥0

Ωp+iA′ [−i].
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The differential D on Ap,cl(A) is defined to be the total differential combining the cohomological differential d on

ΩiA′ , and the de Rham differential dR. In formula we have, for an element of degree n, {ωi}i≥0 ∈
∏
i≥0

(Ωp+iA′ )n−i

D({ωi}) := {dR(ωi−1) + d(ωi)}i≥0 ∈
∏
i≥0

(Ωp+iA′ )n−i+1.

The complex of closed p-forms Ap,cl(A) is functorial in A and provides an∞-functor Ap,cl from the∞-category
of derived rings over k to the∞-category dgk of complexes of k-modules. This∞-functor satisfies étale descent
and can then be left Kan extended to all derived stacks (see §2.1.2) Ap,cl : dStopk −→ dgk. For a derived stack

X we have by definition Ap,cl(X) ' lim
SpecA→X

Ap,cl(A).

The relation between closed p-forms and p-forms is based on the descent property 5.1. The projection to

the first factor
∏
i≥0

Ωp+iA′ [−i] −→ ΩpA′ provides a morphism of ∞-functors Ap,cl −→ Ap defined on derived rings

over k. For a derived Artin stack X over k, and because of proposition 5.1, we obtain a natural morphism

Ap,cl(X) ' lim
SpecA→X

Ap,cl(A) −→ lim
SpecA→X

Ap(A) ' Ap(X).

Remark 5.2 It is important to note that the morphism aboveAp,cl(X) −→ Ap(X) can have rather complicated
fibers, contrary to the intuition that closed forms form a subspace inside the space of all forms. In the derived
setting, being closed is no more a property but becomes an extra structure: a given form might be closed in
many non-equivalent manners. This degree of freedom will be essential for the general theory, but will also
create some technical complications, as the construction a closed form will require in general much more work
than constructing its underlying non-closed form.

Remark 5.3 Another comment concerns the relation between complexes of closed forms and negative cyclic
homology of commutative dg-algebra. For a commutative dg-algebra A, we have its complex of negative cyclic
homology HC−(A), as well as its part of degre p for the Hodge decomposition HC−(A)(p) (see e.g. [Loda]).
The so-called HKR theorem implies that we have a natural equivalence of complexes

Ap,cl(A) ' HC−(A)(p)[−p].

Closed forms on smooth schemes. Let X be a smooth scheme over k of relative dimension d. The
complex Ap,cl(X) is nothing else than the standard truncated de Rham complex of X, and is given by

Ap,cl(X) ' H(X,ΩpX/k → Ωp+1
X/k → · · · → ΩdX/k).

In particular, H0(Ap,cl(X)) is naturally isomorphic to the space of closed p-forms on X in the usual sense. Note
also that when X is moreover proper, the morphism Ap,cl(X) −→ Ap is injective in cohomology because of the
degeneration of the Hodge to de Rham spectral sequence. This is a very special behavior of smooth and proper
schemes, for which being closed is indeed a well defined property.

Closed forms on classifying stacks. Let G be reductive smooth group scheme over k with lie algebra
g. The complex of closed p-forms on BG can be seen, using for instance the proposition 5.1, to be naturally
equivalent to ⊕i≥0Sym

p+i(g∨)G[−p − 2i] with the zero differential. In particular, any element in Symp(g∨)G

defines a canonical closed p-form of degree p on BG. In this example the projection Ap,cl(BG) −→ Ap(BG)
induces an isomorphism on the p-th cohomology groups: any p-form of degree p on BG is canonically closed.
This is again a specific property of classifying stacks of reductive groups.

The canonical closed 2-form of degree 2 on RPerf. Let RPerf be the derived stack of perfect
complexes over k (see theorem 3.3). We have seen that its tangent complex TRPerf is given by End(E)[1],
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the shifted endomorphism dg-algebra of the universal perfect complex E on RPerf . We can therefore define a
2-form of degree 2 on RPerf by considering

Tr : End(E)[1]⊗ End(E)[1] −→ OX [2],

which is, up to a suitable shift, the morphism obtained by taking the trace of the multiplication in End(E).
The above 2-form of degree 2 has a canonical lift to a closed 2-form of degree 2 on RPerf obtained as

follows. We consider the Chern character Ch(E) of the universal object, as an object of negative cyclic ho-
mology HC−0 (RPerf). The part of weight 2 for the Hodge decomposition on HC−0 (RPerf) provides a closed
2-form Ch2(E) of degree 2 on RPerf . It can be checked that the underlying 2-form of Ch2(E) is 1

2 .T r (see
[Pant-Toën-Vaqu-Vezz] for details).

By letting p = 0 in the definition of closed p-forms we obtain the derived de Rham complex of derived Artin
stack. More explicitely, for a derived ring A over k, with normalization N(A) and cofibrant model A′, we set

A∗DR(A) :=
∏
i≥0

ΩiA′ [−i], with the exact same differential D = dR + d, sum of the cohomological and de Rham

differential. For a derived Artin stack X over k we set

A∗DR(X) := lim
SpecA→X

A∗DR(A),

and call it the derived de Rham complex of X over k. It is also the complex of closed 0-forms on X, and
we will simply denote by H∗DR(X) the cohomology of the complex A∗DR(X). There are obvious inclusions of
sub-complexes Ap,cl(A)[−p] ⊂ Ap−1,cl(A)[−p+1] ⊂ · · · ⊂ A∗DR(A), inducing a tower of morphisms of complexes

. . . // Ap,cl(X)[−p] // Ap−1,cl(X)[−p+ 1] // . . . // A1,cl(X)[−1] // A∗DR(X),

which is an incarnation of the Hodge filtration on de Rham cohomology: the cofiber of each morphism
Ap,cl(X)[−p] −→ Ap−1,cl(X)[−p+ 1] is the shifted complex of (p− 1)-forms on X, Ap−1(X)[−p+ 1].

By combining [Feig-Tysg] and [Good], it can be shown that A∗DR(X) does compute the algebraic de Rham
cohomology of the truncation t0(X).

Proposition 5.4 Let X be a derived Artin stack locally of finite presentation over k.

1. The natural morphism j : t0(X) −→ X induces an equivalence of complexes of k-modules

j∗ : A∗DR(X) ' A∗DR(t0(X)).

2. There exists a natural equivalence between A∗DR(t0(X)) and the algebraic de Rham cohomology complex
of X relative to k in the sense of [Hart] (suitably extended to Artin stacks by descent).

The above proposition has the following important consequence. Let ω ∈ Hn(Ap,cl(X)) be closed p-form of
degree n on X. It defines a class in the derived de Rham cohomology [ω] ∈ Hn+p

DR (X).

Corollary 5.5 With the above notations, and under the condition that k is a field, we have [ω] = 0 as soon as
n < 0.

The above corollary follows from the proposition 5.4 together with the canonical resolution of singularities
and the proper descent for algebraic de Rham cohomology. Indeed, proposition 5.4 implies that we can admit
that t0(X) = X. By the canonical resolution of singularities and proper descent we can check that the natural
morphism H∗DR(X) −→ H∗,naiveDR (X) is injective, where H∗,naiveDR (X) denotes the hyper-cohomology of X with
coefficients in the naive de Rham complex

H∗,naiveDR (X) := H(X, OX // Ω1
X

// . . . // ΩdX // . . . ).
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But by definition the image of [ω] is clearly zero in Hn+p,naive
DR (X) when n < 0.

A consequence of corollary 5.5 is that any closed p-form ω of degree n < 0 is exact : it lies in the image of the
natural morphism dR : A≤p−1

DR (X)[p−1] −→ Ap,cl(X), whereA≤p−1
DR (X) is the (p−1)-truncated derived de Rham

complex defined a the cofiber of Ap,cl(X)[−p] −→ A∗DR(X). This has many important implications, because in
general a closed p-form involves an infinite number of data (because of the infinite product appearing in the def-

inition of Ap,cl(X)), but cocycles in A≤p−1
DR (X) only involves a finite number of data. Closed p-forms of negative

degrees are somehow more easy to understand that their positive degree counter-part. As an example, we quote
the Darboux lemma in for shifted symplectic structures of negative shifts (see [Brav-Buss-Joyc, Boua-Groj]).

5.2 Symplectic and Lagrangian structures

We now arrive at the central notion of shifted symplectic and Lagrangian structures. We start with the following
key definition.

Definition 5.6 Let X be a derived Artin stack locally of finite presentation over k and n ∈ Z.

• An n-shifted symplectic structure on X is the data of a closed 2-form ω of degree n, such that the
underlying 2-form on X is non-degenerate: the adjoint morphism

Θω : TX/k −→ LX/k[n]

is an equivalence in Lqcoh(X).

• Let ω be an n-shifted symplectic structure on X, and let Y be another derived Artin stack together with a
morphism f : Y −→ X. A Lagrangian structure on f consists of a homotopy h : f∗(ω) ∼ 0 in the complex
Ap,cl(Y ), such that the induced morphism

Θω,h : TY/k −→ LY/X [n− 1]

is an equivalence in Lqcoh(Y ).

Some comments about the above definition. By definition ω is an element in Hn(Ap,cl(X)). The morphism
Θω is defined by considering the image of ω in Hn(Ap(X)) ' Hn(X,∧2

OX
LX/k) = [OX , (∧2

OX
LX/k)[n]], which

by duality provide a morphism Θω : TX/k −→ LX/k[n].
In the same way, the morphism Θh,ω is defined as follows. The homotopy h provides a homotopy in Ap(Y ),

which is a homotopy to zero of the following composition in Lqcoh(Y )

TY/k // f∗(TX/k)
f∗(Θω)// f∗(LX/k)[n] // LY/k[n].

This homotopy to zero defines a unique morphism in Lqcoh(Y ) from TY/k to the fiber of f∗(LX/k)[n] −→ LY/k[n],
which is LY/X [n− 1].

Remark 5.7 A trivial, but conceptually important remark, passed to me by D. Calaque, is that the notion
of a Lagrangian structure is a generalization of the notion of shifted symplectic structure. To see this we
let ∗ = Spec k be endowed with the zero (n + 1)-shifted symplectic structure. Then an n-shifted symplectic
structure on X simply is a Lagrangian structure on the natural morphism X −→ Spec k.

Before stating the main existence results for shifted symplectic and Lagrangian structures, we present some
more elementary properties as well as some relations with standard notions of symplectic geometry such Hamil-
tonian action and symplectic reduction.

Shifted symplectic structures and amplitude. Let X be a derived Artin stack locally of finite presen-
tation over k. Unless in the situation where X is étale over Spec k, that is LX/k ' 0, there can be at most
one integer n such that X admits an n-shifted symplectic structure. Indeed, because X is locally of finite
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presentation over k the tangent complex TX/k is perfect of some bounded amplitude, and therefore can not be
equivalent in Lqcoh(X) to a non-trivial shift of itself.

From a general point of view, if X is a derived scheme, or more generally a derived Deligne-Mumford stack,
then X can only admit non-positively shifted symplectic structure because TX/k is in this case of non-negative
amplitude. Dually, if X is a smooth Artin stack over k its tangent complex TX/k has non-positive amplitude and
thus X can only carry non-negatively shifted symplectic structures. In particular, a smooth Deligne-Mumford
can only admit 0-shifted symplectic structures, and these are nothing else than the usual symplectic structures.

Shifted symplectic structures on BG and on RPerf. Let G be a reductive smooth group scheme over
k. In our last paragraph §5.1 we have already computed the complex of closed 2-forms on BG. We deduce from
this that 2-shifted symplectic structures on BG are one to one correspondence with non-degenerate G-invariant
scalar products on g.

As for the derived stack of perfect complexes RPerf , we have seen the existence of canonical closed 2-form
of degree 2 whose underlying 2-form is the trace map

1

2
.T r : End(E)[1]⊗ End(E)[1] −→ OX [2].

The trace morphism is clearly non-degenerate, as this can be checked at closed points which reduces to the well
known fact that (A,B) 7→ Tr(A.B) is a non-degenerate pairing on the space of (graded) matrices.

Lagrangian intersections. Let X be a derived Artin stack locally of finite presentation over k and ω an
n-shifted symplectic structures on X. Let Y −→ X and Z −→ X be two morphisms of derived Artin stacks
with Lagrangian structures. Then the fibered product derived stack Y ×X Z carries a canonical (n− 1)-shifted
symplectic structure. The closed 2-form of degree n − 1 on Y ×X Z is simply obtained by pulling-back ω to
Y ×X Z, which by construction comes with two homotopies to zero coming from the two Lagrangian structures.
This two homotopies combine to a self homotopy of 0 in A2,cl(Y ×X Z)[n], which is nothing else than a well
defined element in Hn−1(A2,cl(Y ×X Z)). This closed 2-form of degree (n− 1) on Y ×X Z can then be checked
to be non-degenerate by a direct diagram chase using the non-degeneracy property of Lagrangian structures.
We refer to [Pant-Toën-Vaqu-Vezz] for more details.

The above applies in particular when X is a smooth scheme and is symplectic in the usual sense, and Y
and Z are two smooth subschemes of X which are Lagrangian in X in the standard sense. Then the derived
scheme Y ×X Z carries a canonical (−1)-shifted symplectic structure. This has strong consequences on the
singularities and the local structure of Y ×X Z. For instance, it is shown in [Brav-Buss-Joyc, Boua-Groj] that
locally for the Zariski topology Y ×XZ is the derived critical locus (see below) of a function on a smooth scheme.

Shifted cotangent stacks and derived critical loci. Let X be a derived Artin stack locally of finite
presentation over k. For n ∈ Z we consider the shifted tangent complex TX/k[−n] as well the corresponding
linear derived stack (see §3.3)

T ∗X[n] = Spec (SymOX
(TX/k[−n])) = V(TX/k[−n]) −→ X.

The derived stack T ∗X[n] is called the n-shifted cotangent stack of X. In the same way that total cotangent
space of smooth schemes carries a canonical symplectic structure, the shifted cotangent stack T ∗X[n] does carry
a canonical n-shifted symplectic structure (see [Pant-Toën-Vaqu-Vezz]). Moreover, a closed 1-form of degree n
on X defines a section X −→ T ∗X[n] which comes equiped with a natural Lagrangian structure. In particular, if
f ∈ Hn(X,OX) is a function of degree n on X, its differential dR(f) defines a morphism X −→ T ∗X[n] together
with a Lagrangian structure. The derived critical locus of the function f is defined to be the intersection of
dR(f) with the zero section

RCrit(f) := X ×0,T∗X[n],dR(f) X.

By what we have just seen it comes equiped with a canonical (n−1)-shifted symplectic structure. We note that
when f = 0 then RCrit(f) ' T ∗X[n − 1] with its canonical (n − 1)-shifted symplectic structure. In general,
RCrit(f) is a perturbation of T ∗X[n− 1] obtained using the function f .
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The case n = 0 and X = SpecA a smooth affine scheme has the following explicit description. The derived
critical locus RCrit(f) can then be written as SpecB, where B can be explicitly represented by the following
commutative dg-algebra. As a commutative graded algebra B is SymA(TA/k[1]), where the differential is the
contraction with the 1-form dR(f). For instance π0(B) is the Jacobian ring of A with respect to f .

Hamiltonian actions and symplectic reduction. Shifted symplectic and Lagrangian structures in
degree 0 and 1 can also be used in order to interpret and extend the notion of Hamiltonian action and of
symplectic reduction. Let X be a smooth scheme over k (assume k is a field, but this is stricly necessary),
equiped with a symplectic structure ω. Let G be a reductive smooth group scheme over k acting on X and
preserving the form ω. We assume that the action is Hamiltonian in the sense that there is a moment map

φ : X −→ g∨,

which is a G-equivariant morphism and which is such that ω produces an isomorphism of complexes of vector
bundles on X

OX ⊗k g
a //

id

��

TX/k
φ //

Θω

��

OX ⊗k g∨

id

��
OX ⊗k g

φ // LX/k
a // OX ⊗k g∨,

where a is the morphism induced by the infinitesimal action of G on X.
As explained in [Cala, §2.2] (see also [Safr]), the moment map φ induces a morphism of quotient stacks

φ : [X/G] −→ [g∨/G] ' T ∗BG[1],

which comes equipped with a canonical Lagrangian structure, with respect to the standard 1-shifted symplectic
structure η on T ∗BG[1]. In the same way, if λ ∈ g∨ with stabilizer Gλ, the natural inclusion BGλ ↪→ [g∨/G] is
again equipped with a canonical Lagrangian structure (for instance because the inclusion of the orbit G.λ ⊂ g∨

is a moment map for G.λ, see [Cala]). As a consequence, the derived stack

[X ×g∨ {λ}/Gλ] ' [X/G]×[g∨/G] BGλ

is a fibered product of morphisms with Lagrangian structures and thus comes equipped with a canonical 0-
shifted symplectic structure (see also [Pech] for a more direct proof of this fact). The new feature here is that λ
does not need to be a regular value of the moment map φ in order this to hold. When λ is a regular value the
derived stack [X ×g∨ {λ}/Gλ] is a smooth Deligne-Mumford stack and is the standard symplectic reduction of
X by G. For non-regular values λ the derived stack [X ×g∨ {λ}/Gλ] is a non-smooth derived Artin stack.

The above interpretation of Hamiltonian actions in terms of Lagrangian structures also has a version in the
so-called quasi-Hamiltonian setting (see [Alex-Malk-Mein]), for which T ∗BG[1] is replaced by L(BG) ' [G/G].
The derived stack [G/G] carries a 1-shifted symplectic structure as soon as a non-degenerate G-invariant scalar
product has been chosen on g (this follows from theorem 5.8 for M = S1). The quasi-Hamiltonian structures
are G-equivariant morphisms X −→ G for which the induced morphism [X/G] −→ [G/G] is equipped with
a natural Lagrangian structure. The quasi-Hamiltonian reduction can then still be interpreted as a fibered
product of Lagrangian morphisms (see [Cala, Safr] for more details).

5.3 Existence results

We arrive at the main existence result of shifted symplectic and Lagrangian structures. We will start by stating
the existence of shifted symplectic structures on derived stacks of maps from an oriented source to a shifted
symplectic target. This result can be seen as a finite dimensional and purely algebraic version of the so-called
AKZS formalism of [Alex-Kont-Schw-Zabo]. We will then discuss the possible generalizations and variations in
order to include boundary conditions as well as non-commutative objects.
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We let X ∈ dStk be a derived stack, possibly not represented by a derived Artin stack. We say that X is
oriented of dimension d if there exists a morphism of complexes of k-modules

or : H(X,OX) −→ k[−d],

which makes Poincaré duality to hold in the stable ∞-category Lperf (X) of perfect complexes on X (see
[Pant-Toën-Vaqu-Vezz] for details). More precisely, we ask that for all perfect complex E on X the complex
H(X,E) is a perfect complex of k-modules. Moreover, the morphism or is asked to produce a non-degenerate
pairing of degree −d

H(X,E)⊗k H(X,E∨) // H(X,E ⊗k E∨)
Tr // H(X,OX)

or // k[−d].

The equivalence induced by the above pairing H(X,E) ' H(X,E∨)∨[−d] is a version of Poincaré duality for
perfect complexes on X.

There are several examples of oriented objects X, coming from different origin. Here are the three most
important examples.

• A smooth and proper scheme X of relative dimension d over k, together with a choice of a Calabi-Yau
structure ωX/k ' OX is canonically an oriented object of dimension d as above. The canonical orientation

is given by Serre duality H0(X,OX) ' Hd(X,OX)∨, the image of 1 ∈ H0(X,OX) provides an orientation
or : H(X,OX) −→ k[−d].

• Let X be a smooth and proper scheme of relative dimension d over k, and let XDR be its relative de
Rham object over k (see e.g. [Simp2]). The cohomology H(XDR,OXDR

) simply is alegbraic de Rham
cohomology of X relative to k. The trace morphism of Grothendieck provides a morphism Hd(X,ΩdX/k) =

H2d
DR(X/k) −→ k, and thus an orientation or : H(XDR,OXDR

) −→ k[−2d], making XDR into an oriented
object of dimension 2d. The fact that this morphism or provides the required duality in Lperf (XDR) is
the usual Poincaré duality for flat bundles on X.

• Let M be a compact topological manifold with an orientation Hd(M,k) −→ k. Considered as a constant
derived stack, M , becomes an oriented object of dimension d. The required duality in Lperf (M) is here
Poincaré duality for finite dimensional local systems on M .

Theorem 5.8 Let X be a derived stack which is an oriented object of dimension d. Let Y be a derived Artin
stack locally of finite presentation over k and endowed with an n-shifted symplectic structure. Then, if the
derived mapping stack RMap(X,Y ) is a derived Artin stack locally of finite presentation over k, then it carries
a canonical (n− d)-shifted symplectic structure.

In a nutshell the proof of the above theorem follows the following lines. There is a diagram of derived Artin
stacks

RMap(X,Y ) X × RMap(X,Y )
ev //poo Y,

where ev is the evaluation morphism and p the natural projection. If ω denotes the n-shifted symplectic form
on Y , the (n− d)-shifted symplectic structure on RMap(X,Y ) is morally defined as∫

or

ev∗(ω),

where the integration is made using the orientation or on X. The heart of the argument is to make sense
rigorously of the formula above, for which we refer to [Pant-Toën-Vaqu-Vezz].

Examples of shifted symplectic structures from the theorem 4.3. The above theorem, combined
with the list of examples of oriented objects given before together with some of the already mentioned examples
of shifted symplectic structures (on BG, on RPerf . . . ) provide an enormous number of new instances of shifted
symplectic derived Artin stacks. The most fundamental examples are the following, for which G stands for a
reductive smooth group scheme over k with a chosen G-invariant scalar product on g.
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1. Let X be a smooth and proper scheme of relative dimension d over k together with an isomorphism
ωX/k ' OX . Then the derived moduli stack of G-bundles, BunG(X) := RMap(X,BG) is equipped with
a canonical (2− d)-shifted symplectic structure.

2. Let X be a smooth and proper scheme over k of relative dimension d. Then the derived moduli stack of
G-bundles equipped with flat connexions, LocDR(X,G) := RMap(XDR, BG), carries a canonical (2−2d)-
shifted symplectic structure.

3. Let M be a compact oriented topological manifold of dimension d. The derived moduli stack BunG(M) :=
RMap(M,BG), of G-local systems on M , is equipped with a canonical (2−d)-shifted symplectic structure.

When the orientation dimension is d = 2 the resulting shifted symplectic structures of the above three ex-
amples are 0-shifted. In these case, the smooth part of the moduli stack recovers some of well known symplectic
structures on the moduli space of bundles on K3 surfaces, on the moduli space of linear representations of the
fundamental group of a compact Riemann surface . . . .

Remark 5.9 In the examples 1 − 3 above we could have replaced BG by RPerf with its canonical 2-shifted
symplectic structure. Chosing a faithful linear representation G ↪→ Gln, produces a morphism ρ : BG −→
RPerf , where a vector bundle is considered as a perfect complex concentrated in degree 0. The shifted symplectic
structures on RMap(X,BG) and RMap(X,RPerf) are then compatible with respect to the morphism ρ, at
least if the G-invariant scalar product on g is chosen to be the one induced from the trace morphism on gln.

The theorem 5.8 possesses several generalizations and modifications, among which the most important two
are described below. The basic principle here is that any general form of Poincaré duality should induce non-
degenerate pairing of tangent complexes and must be interpreted as certain shifted symplectic or Lagrangian
structures. In the two examples above we deal with Poincaré duality with boundary and in the non-commutative
setting.

Derived mapping stack with boundary conditions. The theorem 5.8 can be extended to the case
where the source X has a boundary as follows (see [Cala] for more details). We let Y be a derived Artin stack
with an (n + 1)-shifted symplectic structure, and f : Z −→ Y a morphism of derived Artin stacks with a
Lagrangian structure. On the other hand we consider a morphism of derived stacks j : B −→ X as our general
source. We assume that j is equipped with a relative orientation of dimension d which by definition consists of
a morphism of complexes of k-modules

or : H(X,B,O) −→ k[−d],

where H(X,B,O) is the relative cohomology of the pair (X,B) defined as the fiber of H(X,OX) −→ H(B,OB).
The orientation or is moreover assumed to be non-degenerate in the following sense. For E a perfect complex
on X, we denote by H(X,B,E) the relative cohomology of the pair (X,B) with coefficients in E, defined as
the fiber of H(X,E) −→ H(B,E). The trace morphism H(X,E)⊗H(X,E∨) −→ H(X,OX), together with the
orientation or defines a canonical morphism

H(X,E)⊗H(X,B,E∨) −→ H(X,B,O) −→ k[−d− 1],

and we ask the induced morphism H(X,E) −→ H(X,B,E∨)∨[−d] to be an equivalence. We also ask that the
induced morphism

H(B,OB)[−1] −→ H(X,B,O) −→ k[−d]

defines an orientation of dimension (d − 1) on B. This is the form of relative Poincaré duality for the pair
(X,B) with coefficients in perfect complexes. When B = ∅ we recover the notion of orientation on X already
discussed for the theorem 5.8.
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We denote by RMap(j, f) the derived stacks of maps from the diagram f : Y −→ Z to the diagram
j : B −→ X, which can also be written as a fibered product

RMap(j, f) ' RMap(B, Y )×RMap(B,Z) RMap(X,Z).

The generalization of theorem 5.8, under the suitable finiteness conditions on B and X is the existence of
canonical (n − d + 1)-shifted symplectic structure on RMap(j, f) as well as a Lagrangian structure on the
morphism

RMap(X,Y ) −→ RMap(j, f).

The theorem 5.8 is recovered when B = ∅ and Y = ∗ (see remark 5.7). When Y = ∗ but B is not empty,
the statement is that the restriction morphism RMap(X,Y ) −→ RMap(B, Y ) is equipped with a Lagrangian
structure (with respect to the (n− d+ 1)-shifted symplectic structure on RMap(B, Y ) given by theorem 5.8).
Another consequence is the existence of compositions of Lagrangian correspondences in the derived setting (see
[Cala]).

There are many examples of j : B −→ X with relative orientations. First of all X can be the derived stack
obtained from an actual d-dimensional oriented and compact topological manifold with boundary B, for which
the orientation H(X,B) −→ k[−d] is given by the integration along the fundamental class in relative homology
[X] ∈ Hd(X,B). Another example comes from anti-canonical sections. Let X be a smooth and projective
scheme of relative dimension d over k and B ↪→ X be the derived scheme of zeros of a section s ∈ H(X,ω−1

X/k) of

the anti-canonical sheaf. Then the inclusion j : B −→ X carries a canonical relative orientation of dimension d

obtained as follows. There is an exact triangle of quasi-coherent complexes on X, ωX/k
s // OX // OB ,

giving rise to an exact triangle on cohomologies

H(X,ωX/k) // H(X,OX) // H(X,OB) ' H(B,OB),

which identifies H(X,B,O) with H(X,ωX/k). Grothendieck trace map furnishes a morphism or : H(X,ωX/k) −→
k[−d] which is a relative orientation of dimension d for the morphism B ↪→ X. An intersecting comment here is
that B does not need to be smooth over k, and could be a derived scheme (when s = 0) or a non-reduced scheme.

Non-commutative spaces. There are non-commutative versions of the theorem 5.8 concerning the exis-
tence of shifted symplectic structures on the derived stackMT of objects in a given dg-category T as introduced
in [Toën-Vaqu1]. Let T be a smooth and proper dg-category of k (see [Kell, Toën-Vaqu1] for the definition).
There exists a derived stack MT ∈ dStk whose points over a derived k-algebra A is the classifying space of
perfect T op⊗k A-dg-modules. The derived stackMT is not quiet a derived Artin stack, but is locally geometric
in the sense that it is a countable union of open sub-stacks which are derived Artin stacks (the point here is
that these open sub-stacks are derived m-Artin stacks but the integer m is not bounded and varies with the
open sub-stack considered).

We assume that T comes equipped with an orientation of dimension d, by which we mean a morphism

or : HH(T ) −→ k[−d],

where HH(T ) is the complex of Hochschild homology of T (see [Kell]). The morphism is assumed to be a
morphism of mixed complexes, for the natural mixed structure on HH(T ) (see [Kell]), and the trivial mixed
structure on k[−d]. We also assume that or is non-degenerate in the sense that for all pair of objects (a, b)
in T , the composite T (a, b) ⊗ T (b, a) −→ HH(T ) −→ k[−d] induces an equivalence T (a, b) ' T (b, a)∨[−d]. It
can be proved that there exists a canonical (2 − d)-shifted symplectic structure on MT . This statement is a
non-coommutative analogue of theorem 5.8 asMT should be thought as the non-commutative derived mapping
stack from the non-commutative space T to RPerf (according to the general philosophy of Kontsevich and al.
that non-commutative spaces are dg-categories). The proof of this non-commutative version is very close to the
proof of theorem 5.8 exposed in [Pant-Toën-Vaqu-Vezz], with suitable modification. It essentially consists of
defining the shifted symplectic structure by means of the Chern character of the universal object E on MT . The
heart of the proof relies on the correct definition of this Chern character as a mixture of the Chern character in
non-commutative geometry and the Chern character in derived algebraic geometry in the style of [Toën-Vezz6].

56



Finally, theorem 5.8 also possesses a non-commutative version with boundary conditions as follows. We let
f : T −→ T0 be a dg-functor between nice enough dg-categories over k. We assume given a relative orientation
of dimension d on f , that is a morphism of mixed complexes

or : HH(f) −→ k[−d]

where HH(f) is defined as the homotopy fiber of HH(T ) −→ HH(T0). The orientation or is also assumed
to satisfy non-degeneracy conditions similar to a relative orientation between derived stacks mentioned before.
It can then be proved that the natural morphism MT −→ MT0

comes equipped with a natural Lagrangian
structure.

An important example is the following. We assume that T is equipped with an orientation of dimension d,

so MT carries a natural (2 − d)-shifted symplectic structure. We let M(1)
T be the derived stack of morphisms

in T , which comes equipped with two morphisms

MT ×MT M(1)
T

s,coo t //MT ,

where t sends a morphisms in T to its cone, s sends it to its source and c to its target. The correspondenceMT

can be seen to carry a canonical Lagrangian structure with respect to the (2 − d)-shifted symplectic structure
on M3

T . This Lagrangian structure is itself induced by a natural relative orientation on the dg-functor

(s, t, c) : T (1) −→ T × T × T,

where T (1) is the dg-category of morphisms in T . The relevance of this example comes from the fact that the

correspondenceM(1)
T induces the multiplication on the so-called Hall algebra of T (see [Kell] for a review). What

we are claiming here is that under the assumption that T comes equipped with an orientation of dimension
d, MT becomes a monoid in the ∞-category of symplectic correspondences in the sense of [Cala], which can
probably also be stated by saying thatMT is a symplectic 2-segal space in the spirit of the higher Segal spaces
of [Dyck-Kapr]. The compatibility of the Hall algebra multiplication and the shifted symplectic structure on
MT surely is an important phenomenon and will be studied in a different work.

5.4 Polyvectors and shifted Poisson structures

We finish this part by mentioning few words concerning the notion of shifted Poisson structures, dual to that
of shifted closed 2-forms, but which is at the moment still under investigation. We present some of the ideas
reflecting the present knowledge.

We let X be a derived Artin stack locally of finite presentation over k. For an integer n ∈ Z, the complex of
n-shifted polyvector fields on X (relative to k) is the graded complex (i.e. a Z-graded object inside the category
of complexes of k-modules)

Pol(X,n) =
⊕
k∈Z
Pol(X,n)(k) :=

⊕
k∈Z

H(X,Symk
OX

(TX/k[−1− n])),

where TX/k = L∨X/k is the tangent complex of X relative to k. By definition a bi-vector p of degree n on X is

an element p ∈ H−n−2(X,Pol(X,n)(2)), or equivalently a morphism in Lqcoh(X)

p : OX −→ φ(2)
n (TX/k)[−n],

where the symbol φ
(2)
n either means ∧2

OX
if n is even or Sym2

OX
is n is odd.

When X is a smooth scheme over k and n = 0, a bi-vector in the sense above simply is a section p ∈
Γ(X,∧2

OX
TX/k), recovering the usual definition. In general, if ω ∈ Hn(A2) is a 2-form of degree n on X, and if

ω is non-degenerate, then we obtain a bi-vector p(ω) of degree n by duality as follows. We represent the form ω as
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a morphism TX/k ∧TX/k −→ OX [n], and we transport this morphism via the equivalence Θω : TX/k ' LX/k[n]
in order to get another morphism

(LX/k[n]) ∧ (LX/k[n]) ' φ(2)
n (LX/k)[2n] −→ OX [n],

which by duality provides p ∈ H−n(X,φ
(2)
n (TX/k)).

The complexes of forms have been shown to carry an important extra structure, namely the de Rham
differential. In the same way, the complex Pol(X,n) does carry an extra structure dual to the de Rham
differential: the so-called Schouten bracket. Its definition is much harder than the de Rham differential, at
least for derived Artin stacks which are not Deligne-Mumford, because polyvectors, contrary to forms (see
proposition 5.1), do not satisfy some form of smooth descent (there is not even a well defined pull-back of
polyvectors along a smooth morphism). The theory of polyvector possesses a much more global nature than
the theory of forms, and at the moment there are no simple construction of the lie bracket on Pol(X,n) except
when X is Deligne-Mumford.

If X = SpecA is an affine derived scheme then Pol(X,n) has the following explicit description. We consider
N(A) the normalized commutative dg-algebra associated to A, and let A′ be a cofibrant model for N(A) as
a commutative dg-algebra over k. The A′-module of derivations from A′ to itself is TA′/k = Hom(Ω1

A′/k, A
′).

This A′-dg-module is endowed with the standard lie bracket obtained by taking the (graded) commutator of
derivations. This lie bracket satisfies the standard Libniz’s rule with respect to the A′-dg-module structure on
TA′/k, making TA′ into a dg-lie algebroid over A′ (see [Vezz2]). The lie bracket on TA′ extends uniquely to the
symmetric algebra

Pol(X,n) ' SymA′(TA′/k[−1− n])

as a lie bracket of cohomological degree −1−n which is compatible with the multiplicative structure. This results
into a graded pn+2-algebra structure on Pol(X,n), also called an (n + 2)-algebra structure, or (n + 2)-brace
algebra structure (see e.g. [Kont3, Tama]). We will be mainly interested in a part of this structure, namely the
structure of graded dg-lie algebra on the complex Pol(X,n)[n + 1] (the graded nature is unconventional here,
as the bracket has itself a degree −1: the bracket of two elements of weights p and q is an element of weight
p + q − 1. In other words, the lie operad is also considered as an operad in graded complexes in a non-trivial
manner).

This local picture can be easily globalized for the étale topology: when X is a derived Deligne-Mumford
stack, there is a natural graded dg-lie structure on Pol(X,n)[n+ 1]. This is a general fact, for any nice enough
derived Artin stack, due to the following result.

Proposition 5.10 Let X be a derived Artin stack X locally of finite presentation over k, and n ∈ Z. We
assume that X is of the form [Y/G] for Y a quasi-projective derived scheme and G a reductive smooth group
scheme acting on Y . Then the graded complex Pol(X,n)[n+ 1] carries a structure of a graded dg-lie algebra.

At the moment the only proof of this result uses a rather involved construction based on ∞-operads (see
[Toën5]). Also, the precise comparison between the graded dg-lie structure obtained in the proposition and the
more explicit construction when X is Deligne-Mumford has not been fully established yet. Finally, it is believed
that the proposition above remains correct in general, without the strong condition on X of being a quotient of
a quasi-projective derived scheme by a reductive group. The situation with dg-lie structure on polyvector fields
is thus at the moment not completely satisfactory.

The graded dg-lie structure on Pol(X,n) is a crucial piece of data for the definition of shifted Poisson
structures.

Definition 5.11 Let X be a derived Artin stack as in proposition 5.10 and n ∈ Z. The space of n-shifted
Poisson structure on X is the simplicial set Pois(X,n) defined by

Pois(X,n) := Mapdg−liegr (k[−1](2),Pol(X,n)[n+ 1]),
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where dg− liegr denotes the ∞-category of graded dg-lie algebras over k, and k[−1](2) ∈ dg− liegr is the object
k concentrated in cohomological degree 1, with trivial bracket and pure of weight 2.

When X is a smooth scheme over k, then the space Pois(X, 0) can be seen to be discrete and equivalent
to the set of Poisson structures on X (relative to k) in the usual sense. Another easy case is for X = BG, for
G reductive, as Pol(X,n) ' Symk(g[−n])G with g being of weight 1, and weight considerations show that the
the graded dg-lie algebra Pol(X,n)[n+ 1] must be abelian in this case. In particular, Pol(X,n)[n+ 1] is formal
as a graded dg-lie algebra. In particular, BG admits non-zero n-shifted Poisson structures only when n = 2.
When n = 2 we have moreover

π0(Pois(X, 2)) ' Sym2
k(g)G.

We know little general constructions methods for n-shifted Poisson structures. It is believed that the main
existence statement for n-shifted symplectic structures (see theorem 5.8) has a version for n-shifted Poisson
structures too. Results in that direction, but only at the formal completion of the constant map, are given
in [John]. It is also believed that the dual of an n-shifted symplectic structure defines a canonical n-Poisson
structures. Thought this is clear at the level of forms and bi-vectors, taking into account the property of being
closed runs into several technical difficulties. Some non-functorial construction can be done locally, for instance
using the Darboux theorem for shifted symplectic structure of [Brav-Buss-Joyc, Boua-Groj], but this approach
has probably no hope to extend to more general derived Artin stacks. We thus leave the comparison between
n-shifted symplectic and Poisson structures as open questions (we strongly believe that the answers to both
questions are positive).

Question 5.12 Let X be a derived Artin stack as in the proposition 5.10 so that the space Pois(X,n) is
defined. Let Symp(X,n) be the space of n-shifted symplectic structures non X (defined as a full sub-space of
the Dold-Kan construction applied to A2,cl(X)[n]).

• Can we define a morphism of spaces

Symp(X,n) −→ Pois(X,n)

that extends the duality between n-shifted non-degenerate 2-forms and n-shifted bi-vectors ?

• Is this morphism inducing an equivalence between Symp(X,n) and the full sub-space of Pois(X,n) con-
sisting of non-degenerate n-shifted Poisson structures ?

The general theory of n-shifted Poisson structures has not been developed much and remains to be system-
atically studied. There is for instance no clear notion at the moment of co-isotropic structures, as well as no
clear relations between n-Poisson structures and n-shifted symplectic groupoids. The theory is thus missing
some very fundamental notions, one major reason is the inherent complexity of the very definition of the lie
bracket on polyvector fields of proposition 5.10 making all local coordinate type argument useless.

To finish this section, we would like to mention the next step in the general theory of shifted Poisson
structures. It is known by [Kont2] that a smooth Poisson algebraic k-variety X admits a canonical quantization
by deformation, which is a formal deformation of the category QCoh(X) of quasi-coherent sheaves on X. In
the same way, a derived Artin stack X (nice enough) endowed with an n-shifted Poisson structure should be
quantified by deformations as follows (the reader will find more details about deformation quantization in the
derived setting in [Toën6]).

An n-Poisson structure p on X is by definition a morphism of graded dg-lie algebras, and thus of dg-lie
algebras

p : k[−1] −→ Pol(X,n)[n+ 1].

We put ourselves in the setting of derived deformation theory of [Luri1] (see also [Hini]). The dg-lie algebra
k[−1] is the tangent lie algebra of the formal line Spf k[[t]], and the morphism p therefore represents an element
p ∈ FPol(X,n)[n+1](k[[t]]), where Fg denotes the formal moduli problem associated to the dg-lie algebra g.

We invoke here the higher formality conjecture, which is a today a theorem in many (but not all) cases.
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Conjecture 5.13 Let X be a nice enough derived Artin stack over k and n ≥ 0. Then the dg-lie algebra
Pol(X,n)[n + 1] is quasi-isomorphic to the dg-lie algebra HHEn+1(X)[n + 1], where HHEn+1 stands for the
iterated Hochschild cohomology of X.

Somme comments about conjecture 5.13.

• The higher Hochschild cohomology HHEn+1(X) is a global counter-part of the higher Hochschild coho-
mology of [Pira]. As a complex it is defined to be

HHEn+1(X) := EndLqcoh(L(n)X)(OX),

where L(n)(X) := RMap(Sn, X) is the higher dimension free loop space of X (suitably completed when n
is small). The sheaf OX is considered on L(n)(X) via the natural morphism X −→ L(n)(X) corresponding
to constant maps. It is proven in [Toën5] that HHEn+1(X) endows a natural structure of a En+2-algebra,
and thus that HHEn+1(X)[n+1] has a natural dg-lie algebra structure, at last when X is a quotient stack
of a derived quasi-projective scheme by a linear group (see [Fran] for the special case of affine derived
schemes).

• The conjecture 5.13 follows from the main result of [Toën5] when n > 0 (and X satisfies enough finiteness
conditions). When n = 0 and X is a smooth Deligne-Mumford stack the conjecture is a consequence of
Kontsevich’s formality theorem (see [Kont2]). When X is a derived Deligne-Mumford stack Tamarkin’s
proof of Kontsevich’s formality seems to extend to also provide a positive answer to the conjecture (this is
aleady observed implicitly in [Kont3], but has also been explained to me by Calaque). Finally, for n = 0
and X is a derived Artin stack which is not Deligne-Mumford, the conjecture is wide open.

• The case n = 1 and X a smooth scheme of the conjecture appears in [Kapu]. The case where X is a
smooth affine variety appears implicitly in [Kont3] and has been known from experts at least for the case
of polynomial algebras. We also refer to [Cala-Will] for related results in the context of commutative
dg-algebras.

The consequence of the conjecture 5.13 is the existence of deformations quantization of shifted Poisson
structures. Indeed, let n ≥ 0 and p an n-shifted Poisson structure on X. By conjecture 5.13 we get out of p a
morphism of dg-lie algebras p : k[−1] −→ HHEn+1(X)[n+ 1], and thus an element

p ∈ FHHEn+1 (X)[n+1](k[[t]]).

When n < 0 the same argument provides an element

p ∈ FHHE−n+1 (X)[−n+1](k[[t2n]]),

where t2n is now a formal variable of cohomological degree 2n.
The element p as above defines quantizations by deformations thanks to the following theorem whose proof

will appear elsewhere (we refer to [Fran] for an incarnation of this result in the topological context).

Theorem 5.14 Fro n ≥ 0, the formal moduli problem FHHEn+1 (X)[n+1], associated dg-lie algebra HHEn+1(X)[n+

1], controls formal deformations of the ∞-category Lqcoh(X) considered as an n-fold monoidal stable k-linear
∞-category.

The element p defined above, and the theorem 5.8, defines a formal deformation Lqcoh(X, p) of Lqcoh(X) as
an |n|-fold monoidal ∞-category, which by definition is the deformation quantization of the n-shifted Poisson
structure p.

Remark 5.15 • Theorem 5.14 refers to a rather evolved notion of deformation of n-fold monoidal linear
∞-categories, based on a higher notion of Morita equivalences. In the affine case, this is incarnated by the
fact that En+1-algebras must be considered as (n + 1)-categories with a unique object (see e.g. [Fran]).
The precise notions and definitions behind theorem 5.14 are out of the scope of this survey.
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• When X = BG, for G reductive, and the 2-Poisson structure on X is given by the choice of an element
p ∈ Sym2(g)G, the deformation quantization Lqcoh(X, p) is a formal deformation of the derived ∞-
category of representations of G as a 2-fold monoidal∞-category. This deformation is the quantum group
associated to G and the choice of p ∈ Sym2(g)G.

• The derived mapping stacks X = RMap(M,BG) are often endowed with n-shifted symplectic structures
(see theorem 5.8). By 5.12 these are expected to correspond to n-shifted Poisson structures on X, which
can be quantified by deformations as explained above. These quantization are very closely related to
quantum invariants of M when M is of dimension 3 (e.g. Casson, or Donaldons-Thomas invariants). In
higher dimension the quantization remains more mysterious and will be studied in forthcoming works.
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[Toën4] Toën, B. Proper local complete intersection morphisms preserve perfect complexes. Preprint
arXiv:1210.2827.
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