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ABSTRACT. We consider the nonlinear Schrödinger equation under a partial quadratic

confinement. We show that the global dispersion corresponding to the direction(s) with

no potential is enough to prove global in time Strichartz estimates, from which we infer

the existence of wave operators thanks to suitable vector-fields. Conversely, given an initial

Cauchy datum, the solution is global in time and asymptotically free, provided that confine-

ment affects one spatial direction only. This stems from anisotropic Morawetz estimates,

involving a marginal of the position density.

1. INTRODUCTION

1.1. Motivation. It is well known that the solution to

(1.1) i∂tu+
1

2
∆u = 0, (t, x) ∈ R×R

d,

with u|t=0 ∈ S(Rd), has large time dispersive properties which allow, for instance, to

develop scattering theories both in the presence of a linear perturbation and in a nonlinear

setting (see e.g. [9, 11, 14, 33]). On the other hand, in the presence of an (isotropic)

harmonic potential,

(1.2) i∂tu+
1

2
∆u =

|x|2
2
u, (t, x) ∈ R×R

d,

the solution is periodic in time. This is a consequence of the existence of a Hilbert basis

for the harmonic oscillator H0 = − 1
2∆+ |x|2

2 (see e.g. [23]): the pure point spectrum is

σp(H0) =

{
d

2
+ k =: λk ; k ∈ N

}
,

and the associated eigenfunctions are given by (tensor products of) Hermite functions (de-

noted by ψjk, associated to λk), which form a basis of L2(Rd). So if

u(0, x) =
∑

j,k∈N

αjkψjk(x),

then for all t ∈ R,

u(t, x) =
∑

j,k∈N

αjkψjk(x)e
−i( d

2+k)t.
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2 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

Perturbations of (1.2) rather lead to KAM type results, in the linear or in the nonlinear

setting (see e.g. [17, 22]). In this paper, we study the large time behavior of solutions to a

nonlinear perturbation of a mixture of the above two linear dynamics:

(1.3) i∂tu = Hu+ λ|u|2σu, (x, y) ∈ R
n ×R

d−n, H = −1

2
∆x +

|x|2
2

− 1

2
∆y,

with d > 2, 1 6 n 6 d − 1, λ ∈ C and σ > 0. We show that if the power of the

nonlinearity is sufficiently large, then a scattering theory is available: if f(z) = |z|2σz is

short range in space dimension d− n, then the nonlinearity is negligible for large time. In

the rest of the introduction, we make this statement more precise.

We emphasize also the fact that the harmonic potential in (1.3) corresponds to the stan-

dard modelling for magnetic traps in the contexts of Bose-Einstein condensation (see e.g.

[19, 28]). So for instance, our result shows that turning off the confinement in some of the

directions may suffice for the condensate to evolve asymptotically freely, and that turning

it off in all directions is not necessary: it is possible to keep some properties of the linear

confinement, associated to the linear Hamiltonian H .

1.2. A quick review on scattering for NLS. Consider

(1.4) i∂tu+
1

2
∆u = λ|u|2σu, x ∈ R

d,

and introduce the space

Σ =
{
f ∈ L2(Rd) ; ‖f‖Σ := ‖xf‖L2(Rd) + ‖∇f‖L2(Rd) <∞

}
.

The following statement summarizes several results which can be found in e.g. [9, 14].

Theorem 1.1. Let d > 1, λ ∈ C, σ > 0 with σ < 2/(d− 2) if d > 3.

1. Existence of wave operators in H1. Suppose that σ > 2/d. Let u− ∈ H1(Rd).
There exist T > 0, depending on |λ|, d, σ and ‖u−‖H1 , and a unique solution u ∈
C((−∞,−T ];H1) to (1.4) such that

∥∥∥u(t)− ei
t
2∆u−

∥∥∥
H1

=
∥∥∥e−i t

2∆u(t)− u−
∥∥∥
H1

−→
t→−∞

0.

2. Existence of wave operators in Σ. Let u− ∈ Σ. There exist T > 0, depending on |λ|, d,

σ and ‖u−‖Σ, and a unique solution u ∈ C((−∞,−T ]; Σ) to (1.4) such that
∥∥∥e−i t

2∆u(t)− u−
∥∥∥
Σ

−→
t→−∞

0,

under the following assumption on σ:

σ > 1 if d = 1, σ >
2

d+ 2
if d > 2.

3. Asymptotic completeness in H1. Suppose that λ ∈ R, with λ > 0, and σ > 2/d. For

all u0 ∈ H1(Rd), there exist a unique u ∈ C(R;H1) solution to (1.4) with u|t=0 = u0,

and a unique u+ ∈ H1(Rd) such that
∥∥∥u(t)− ei

t
2∆u+

∥∥∥
H1

=
∥∥∥e−i t

2∆u(t)− u+

∥∥∥
H1

−→
t→+∞

0.

4. Asymptotic completeness in Σ. Suppose that λ > 0, and σ > 2−d+
√
d2+12d+4
4d . For all

u0 ∈ Σ, there exist a unique u ∈ C(R; Σ) solution to (1.4) with u|t=0 = u0, and a unique

u+ ∈ Σ such that ∥∥∥e−i t
2∆u(t)− u+

∥∥∥
Σ

−→
t→+∞

0.
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 3

5. Asymptotic completeness in Σ for small data. Let λ ∈ R. Suppose that

σ > 1 if d = 1, σ >
2

d+ 2
if d > 2,

and λ > 0 if σ > 2/d. If ‖u0‖Σ is sufficiently small, there exist a unique u ∈ C(R; Σ)
solution to (1.4) with u|t=0 = u0, and a unique u+ ∈ Σ such that

∥∥∥e−i t
2∆u(t)− u+

∥∥∥
Σ

−→
t→+∞

0.

6. Existence of long range effects. Suppose σ 6 1/d. If u ∈ C([T,∞);L2(Rd) solution

to (1.4) and u+ ∈ L2(Rd) satisfy
∥∥∥u(t)− ei

t
2∆u+

∥∥∥
L2

=
∥∥∥e−i t

2∆u(t)− u+

∥∥∥
L2

−→
t→+∞

0,

then necessarily, u = u+ = 0.

Remark 1.2. Uniqueness is actually granted in smaller spaces than in the above statement,

involving a mixed time-space norm which we have omitted to simplify the presentation.

Remark 1.3. As pointed out in the above statement, the free group ei
t
2∆ is unitary on

H1(Rd), while it is not on Σ.

The above (positive) results all rely on (global in time) Strichartz estimates. It is es-

sentially the only tool to prove the first point, while the second point uses the operator

x + it∇, which provides an explicit decay rate in time, to improve the assumption on σ.

The third point relies on Morawetz estimates (see also [16, 29]). The fourth point relaxes

the assumption of the third point on σ, since

2

d
>

2− d+
√
d2 + 12d+ 4

4d
>

1

d
.

It relies on the pseudo-conformal evolution law, which provides a rather simple relation

concerning the time evolution of the L2 norm of (x+ it∇)u. The fifth point is essentially

the same as the second one, plus a bootstrap argument. The final point means that if

σ 6 1/d, linear and nonlinear dynamics can no longer be (easily) compared, due to long

range effects.

To be complete, we recall the above mentioned pseudo-conformal evolution law: if u
solves (1.4), then

d

dt

(
1

2
‖(x+ it∇x)u‖2L2 +

λt2

σ + 1
‖u‖2σ+2

L2σ+2

)
=

λt

σ + 1
(2 − dσ)‖u‖2σ+2

L2σ+2 .

This law was discovered in [15]. A generalization to the case of an external potential can

be found in [9]. Note however that in the presence of an external potential, it seems that

the corresponding evolution law can be exploited only in the case where the potential is

exactly quadratic and isotropic ([5]). In particular, in the case of a partial confinement

as in (1.3), the law presented in [9] seems helpless as far as the description of large time

behavior is concerned.

1.3. Heuristics. Leaving out all the technical aspects, scattering for (1.4) stems from the

following remark. As t→ +∞, we have

ei
t
2∆f(x) =

1

(it)d/2
f̂
(x
t

)
ei

|x|2

2t + o(1) in L2(Rd),
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4 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

where the Fourier transform is normalized as

Ff(ξ) = f̂(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξdx.

Assuming that the solution to (1.4) behaves as the free evolution of a scattering state u+ as

t→ +∞, the nonlinear potential in (1.4) satisfies

|u(t, x)|2σ ≈ 1

tdσ

∣∣∣û+
(x
t

)∣∣∣
2σ

.

The function on the right hand side belongs to L1
tL

∞
x provided that (u+ is sufficiently

localized and) σ > 1/d. From the linear scattering point of view [11], this is consistent

with the fact that u behaves asymptotically like a solution to the free equation (1.1). In

the case σ 6 1/d, the (nonlinear) potential remains relevant at leading order for all time,

no matter how large, as proved in [2]; long range effects were described for the first time

in [27] in the case of (1.4). Note however that except in the cases d = 1 and d = 2,

Theorem 1.1 introduces restrictions on the lower bound for σ which are not intuitive, and

are likely to be “only” technical.

In the case of (1.3), the x-part is not expected to yield large time dispersion, while the y-

part should provide large time dispersion. From this perspective, it seems natural to expect

a scattering theory for (1.3) with the same numerology as in Theorem 1.1, with d replaced

by d− n as far as lower bounds on σ are concerned.

Such a problem is to be compared with the approach in [31]. The authors study (1.3)

where, instead of considering the harmonic oscillator on R
n, they examine the Laplacian

on a compact manifold without boundary. Also, in [18], Z. Hani and B. Pausader con-

sider a similar problem in the particular case where λ = 1, σ = 2 (quintic, defocusing

nonlinearity), x ∈ T
2 (n = 2) and d = 3. This problem is in addition both L2 and energy-

critical, an aspect which introduces new difficulties compared to (1.3) as it is treated in the

present paper. In both [18] and [31], the nonlinearity in supposed to be short range in the y
variable so that scattering in H1 can be expected, σ > 2/(d−n), and small data scattering

is established: for small initial data (in spaces that we do not describe here), the solution

to the nonlinear equation is global in time, and behaves for large time like a solution to the

linear equation.

More recently, in [32], the authors have considered the issue of asymptotic completeness

for the nonlinear Schrödinger equation posed on R
N × T, a case which corresponds to

n = 1 for (1.3). They prove that a scattering theory is available with the same numerology

as on R
N , provided that the nonlinearity in energy-subcritical in total space dimension

N + 1. Such a result is qualitatively very similar to our Theorem 1.10.

Note that like withH in (1.3), the dynamics in the x variable prevents the free dynamics

from being as trivial as in the case of (1.1). We will return to a comparison with these

papers on a more technical level in Sections 2 and 3.

1.4. Main results. Note that the definition of Σ has to be adapted to the present notations:

Σ =
{
f ∈ L2(Rd) ; ‖f‖Σ := ‖xf‖L2(Rd) + ‖yf‖L2(Rd) + ‖∇x,yf‖L2(Rd) <∞

}
.

In view of [7, Theorem 1.8], we have:

Proposition 1.4. Let d > 2, 1 6 n 6 d − 1, λ ∈ R, and σ > 0 with σ < 2/(d − 2) if

d > 3. If σ > 2/d, assume in addition that λ > 0. For all u0 ∈ Σ, (1.3) has a unique

solution

u ∈ C(R; Σ) ∩ L(4σ+4)/(dσ)
loc

(
R;W 1,2σ+2(Rd)

)
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 5

such that u|t=0 = u0. The following conservations hold:

d

dt
‖u(t)‖2L2(Rd) =

d

dt

(
〈u(t), Hu(t)〉+ λ

σ + 1
‖u(t)‖2σ+2

L2σ+2(Rd)

)
= 0.

Our first result regarding scattering theory is the existence of wave operators, along with

asymptotic completeness for small data:

Theorem 1.5. Let d > 2, 1 6 n 6 d− 1, λ ∈ C, and σ > 0 with σ < 2/(d− 2) if d > 3.

Suppose in addition that

(1.5) σ >
2d

d+ 2

1

d− n
.

• Existence of wave operators. Let u− ∈ Σ. There exist T > 0, depending on |λ|, d, n, σ
and ‖u−‖Σ, and a unique solution u ∈ C((−∞,−T ]; Σ) to (1.3) such that

∥∥eitHu(t)− u−
∥∥
Σ

−→
t→−∞

0.

• Asymptotic completeness for small data. Let u0 ∈ Σ and u be the solution provided by

Proposition 1.4. If ‖u0‖Σ is sufficiently small, there exists a unique u+ ∈ Σ such that
∥∥eitHu(t)− u+

∥∥
Σ

−→
t→+∞

0.

Remark 1.6 (Uniqueness). Uniqueness is stated rather loosely in the first point, for an extra

property will be needed, which is too involved to be made precise here. See Section 4 for

full details.

Remark 1.7 (Lower bound on σ). The assumption (1.5) is the expected one, except possibly

for the factor 2d/(d + 2). If d = 2 (hence n = 1), (1.5) corresponds to the heuristics in

the previous subsection. On the other hand if d > 3, we have 2d/(d + 2) > 1, and the

expected lower bound for σ is not reached. Note that this factor is the same as in the second

point in Theorem 1.1. It actually appears for the same technical reason as in the context of

Theorem 1.1, as will be clear in Section 4.

Remark 1.8 (Values allowed for n). The assumptions of Theorem 1.5 always allow the

value n = 1 (one direction of confinement). The value n = 2 is allowed for d > 3, since

the range
2d

d+ 2

1

d− 2
< σ <

2

d− 2
is non-empty. The value n = 3 is allowed only if d > 7, and no value n > 4 can be

considered, since for d > 5,
2d

d+ 2

1

d− 4
>

2

d− 2
.

So in the physically relevant cases d = 2 or 3, any n such that 1 6 n 6 d− 1 is allowed.

Regarding asymptotic completeness for large data, the first remark is that due to the

anisotropy of the operator H , no analogue of the pseudo-conformal evolution law, which

is used in the proof of the fourth point in Theorem 1.1, must be expected. Therefore, it

is more sensible to rely on Morawetz type estimates, which we prove in a more general

context than the framework of (1.3) with a quadratic potential.

Proposition 1.9 (Anisotropic Morawetz estimates). ConsiderH = − 1
2∆x+V (x)− 1

2∆y ,

where V is a real-valued potential depending only on x ∈ R
n. Let λ > 0 and assume that

the solution u to (1.3) with u|t=0 = u0 ∈ L2(Rd) exists globally, and satisfies

sup
t∈R

‖∇yu(t)‖L2(Rd) <∞.
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6 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

Then we have

(1.6)

∥∥∥|∇y|
3−(d−n)

2 R
∥∥∥
2

L2
t,y(R×Rd−n)

≤ C‖u0‖3L2(Rd) sup
t∈R

‖∇yu(t)‖L2(Rd),

where

R(t, y) :=

∫

Rn

|u(t, x, y)|2 dx,

is the marginal of the mass density.

Using these estimates, we can prove asymptotic completeness results. Note however

that since we consider energy-subcritical problems on R
d, we assume

σ <
2

(d− 2)+
.

On the other hand, proving asymptotic completeness like in R
d−n via Morawetz estimates

(d−n is the “scattering dimension”) is sensible, in view of the third point of Theorem 1.1,

provided that

σ >
2

d− n
.

The above two conditions are compatible if and only if n = 1. This restriction is expected

to be only technical, since scattering should occur under the weaker assumption

σ >
1

d− n
,

but we lack of tools to decrease the value of σ down to this threshold. Note that in the

small data case, asymptotic completeness is established for n = 2 provided that d > 3, for

instance, from Theorem 1.5. On the other hand, it is our choice to state the result only for

d 6 4, since the case d > 5 would bring new technicalities in the presentation, but no new

real difficulty (see also [32]).

Theorem 1.10 (Asymptotic completeness). Let n = 1, 2 6 d 6 4, and λ > 0. Assume

moreover:

• If d = 2: σ > 2.

• If d = 3: 1 < σ < 2.

• If d = 4: 2/3 < σ < 1.

For all u0 ∈ Σ, there exists a unique u+ ∈ Σ such that the solution u provided by Propo-

sition 1.4 satisfies
∥∥eitHu(t)− u+

∥∥
Σ

−→
t→+∞

0.

1.5. Structure of the paper. In Section 2, we recall some of the aspects in [18, 31], with

emphasis on aspects related to Strichartz estimates. In Section 3, we propose a slight gen-

eralization of a result from [31], and establish global in time Strichartz estimates associated

to e−itH which are isotropic in space, in the same fashion as in [18], and as opposed to

[32, 31]. These estimates allow us to prove Theorem 1.5 in Section 4, thanks to suitable

vector-fields. Proposition 1.9 is established in Section 5, and Theorem 1.10, in Section 6.

Finally in an appendix, we present formal arguments suggesting the existence of long range

effects if σ is not sufficiently large.
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 7

2. NONLINEAR SCHRÖDINGER EQUATION ON PRODUCT SPACES

In this section, we recall some results which are highly related to the framework of the

present paper, at least qualitatively.

A key step both in [31] and in [18] consists in proving global in time Strichartz esti-

mates, even though the free dynamics is not fully dispersive due to the boundedness of the

compact manifold (T2 in the case of [18]). For Mn an n-dimensional compact manifold

without boundary, consider

(2.1) i∂tu+
1

2
∆Mn×Rd−nu = F.

We introduce once and for all the notion of admissible pairs inspired by Strichartz estimates

on R
k. The definition includes a notion of “dispersive dimension”, and will be of constant

use in this paper.

Definition 2.1. Let k be a positive integer. A pair (q, r) is k-admissible if 2 6 r < 2k
k−2

(2 6 r 6 ∞ if k = 1, 2 6 r <∞ if k = 2) and

2

q
= k

(
1

2
− 1

r

)
.

Proposition 2.2 (From [31]). Let d > 2, 1 6 n 6 d − 1 and Mn be an n-dimensional

compact manifold without boundary. For (x, y) ∈ Mn × R
d−n, the following estimate

holds: there exists Cr1,r2 such that

‖eit∆x,yf‖Lp1
t L

r1
y L2

x
+

∥∥∥∥
∫ t

0

ei(t−s)∆x,yF (s, x, y)ds

∥∥∥∥
L

p1
t L

r1
y L2

x

6 Cr1,r2

(
‖f‖L2

x,y
+ ‖F‖

L
p′2
t L

r′2
y L2

x

)
,

where the pairs (p1, r1) and (p2, r2) are (d− n)-admissible.

The proof in [31] relies on the fact that ∆Mn possesses an eigenbasis in L2(Mn): by

decomposing any solution to (2.1) on this eigenbasis, each coefficient solves a Schrödinger

equation on R
d−n, and satisfies global Strichartz estimates. Proposition 2.2 follows by

summing these inequalities inL2(Mn) and invoking Minkowski inequality. In Section 3.1,

we present a generalization of this result, which does not require any spectral analysis.

In the case where d = 3, n = 2 and M2 = T
2, another family of estimates has been

established in [18]. For γ ∈ Z, set Iγ = 2π[γ, γ + 1).

Proposition 2.3 (From [18]). Let N > 1 be dyadic, then
∥∥eit∆R×T2P6Nu0

∥∥
ℓqγL

p
t,x,y(Iγ×R×T2)

. N( 3
2− 5

p)‖u0‖L2(R×T2),

whenever

p > 4 and
2

q
+

1

p
=

1

2
,

and where P6N stands for a frequency cut-off.

An important difference with the approach in [31] is that in the case Mn = T
n, the

eigenbasis of the Laplacian possesses a group structure, which makes it possible to proceed

with more explicit computations. Extensive use of Strichartz estimates on T
2 [4] (see

also [13]) is also made to prove Proposition 2.3. We emphasize however that the proof

of Proposition 2.3 is rather involved technically. We prove an analogous result in the

framework of (1.3) in Section 3.2. Even though the group structure of the eigenfunctions

ha
l-0

08
70

04
3,

 v
er

si
on

 1
 - 

4 
O

ct
 2

01
3



8 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

of H is lost (the eigenfunctions are given by Hermite functions), computations are less

involved, and one does not have to face a loss of regularity for local Strichartz estimates

associated to the harmonic oscillator.

3. GLOBAL IN TIME STRICHARTZ ESTIMATES

3.1. A slight generalization. In this subsection, we generalize Proposition 2.2 in a case

where the existence of an eigenbasis for the operator in the x variable is not assumed.

Proposition 3.1. Let d > 2, 1 6 n 6 d − 1, Xn be an n-dimensional space, and

y ∈ R
d−n. Let P be an operator acting on the x variable, but not on the y variable. In

particular,

(3.1) [P,∆y] = 0.

Assume that the flow generated by P is uniformly bounded on L2(Xn), at least in the

future,

∃C > 0, ‖eitP v0‖L2(Xn) 6 C‖v0‖L2(Xn), ∀t > 0.

Then for all u0 ∈ L2(Rd), all (d − n)-admissible pairs (p1, r1) and (p2, r2), there exists

Cr1,r2 such that the solution to

i∂tu+ Pu+∆yu = F, u|t=0 = u0,

satisfies:

‖u‖Lp1
t (R+;L

r1
y L2

x)
6 Cr1,r2

(
‖u0‖L2

x,y
+ ‖F‖

L
p′
2

t (R+;L
r′
2

y L2
x)

)
.

For instance,Xn may be any manifold without boundary, and P a Schrödinger operator,

including a real-valued external potential or magnetic field, with decay or sign assumptions

to ensure that the flow is well-defined on L2(Xn). In this cases, it may happen that no

spectral theory like in [31] is available. In general, the Xn part can be viewed as a black

box, and Proposition 3.1 is a way to take advantage of the Schrödinger dispersion onRd−n.

Example 3.2. In the case of Schrödinger operators on R
n, P = −∆x + V (x), it suffices

to consider V = V1 + V2, with (see [30, p. 199]) V1, V2 real-valued and measurable, and

• V1(x) > −a|x|2 − b for some constants a and b.
• V2 ∈ Lp(Rn) with p > 2 if n 6 3, p > 2 if n = 4, and p > n/2 if n > 5.

This includes in particular the case studied in this paper, V (x) = |x|2/2.

Example 3.3. Still on R
n, P may be any polynomial in Dx = −i∂x, not necessarily

elliptic, or more generally a real-valued Fourier multiplier.

Proof. The commutation assumption (3.1) implies

eit(P+∆y) = eitP eit∆y = eit∆yeitP .

Using this remark, the assumption that eitP is bounded on L2(Xn) for positive time, and

the standard properties of the Schrödinger group on R
d−n, we have:

‖eit(P+∆y)‖L2
x,y→L2

x,y
. 1, ‖eit(P+∆y)‖L1

yL
2
x→L∞

y L2
x
.

1

t(d−n)/2
, t > 0.

Invoking [21, Theorem 10.1], with

B0 = H = L2
x,y, B1 = L1

yL
2
x,
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 9

we have

‖eit(P+∆y)u0‖Lp
t (R+;B∗

θ )
. ‖u0‖H ,

∥∥∥∥
∫ t

0

ei(t−s)(P+∆y)F (s)ds

∥∥∥∥
L

p1
t (R+;B∗

θ1
)

. ‖F‖
L

p′2
t (R+;Bθ2

)
,

where for 0 6 θ 6 1, Bθ denotes the real interpolation space (B0, B1)θ,2, and 2/p =
(d− n)θ/2, p > 2, (p, θ, d− n) 6= (2, 1, 1), hence the proposition. �

3.2. The case of partial harmonic confinement. We split the Hamiltonian H into two

parts, the confining one and the fully dispersive one, by denoting

H1 = −1

2
∆x +

|x|2
2

; H2 = −1

2
∆y .

As in the previous subsection, we note that both operators commute, [H1, H2] = 0, there-

fore their corresponding propagators also commute

e−itH = e−it(H1+H2) = e−itH1e−itH2 = e−itH2e−itH1 .

The classical formula

e−itH2g(y) =
1

(2iπt)(d−n)/2

∫

Rd−n

ei
|y−y′ |2

2t f(y′)dy′

yields the standard global dispersive estimate

(3.2) ‖e−itH2‖L1(Rd−n)→L∞(Rd−n) 6
1

(2π|t|)(d−n)/2
, ∀t 6= 0.

Similarly, the fundamental solution associated to H1 is given by Mehler’s formula [25]:

e−itH1f(x) =
1

(2iπ sin t)n/2

∫

Rn

e
i

2 sin t((|x|
2+|x′|2) cos t−2x·x′)f(x′)dx′,

where the square root of sin t means implicitly that the singularities of the fundamental

solution are taken into account: every time sin t = 0, a phase shift appears (Maslov index;

see e.g. [20, 34]). The only information that we shall actually use is that local in time

dispersive estimates are available, periodically in time:

(3.3) ‖e−itH1‖L1(Rn)→L∞(Rn) 6
1

(2π| sin t|)n/2
, ∀t 6∈ πZ.

A property that we will use crucially to establish global Strichartz estimates for e−itH is

the fact that the above right hand side is periodic (see Remark 3.5 below). Accordingly, for

γ ∈ Z, we set Iγ = π[γ − 1, γ + 1).

Theorem 3.4 (Global Strichartz estimates). Let d > 2 and 1 6 n 6 d−1. If 2 6 r < 2d
d−2

and the pairs (q, r) and (p, r) are, respectively, d-admissible and (d− n)-admissible, then

the following two inequalities hold,

(3.4)
∥∥e−itHu0

∥∥
ℓpγLq(Iγ ;Lr(Rd))

. ‖u0‖L2(Rd),

and

(3.5)

∥∥∥∥
∫

t∈R

eitHF (t)dt

∥∥∥∥
L2(Rd)

. ‖F‖
ℓp

′
γ Lq′ (Iγ ;Lr′(Rd))

.
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10 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

Also, if (p1, q1, r1) and (p2, q2, r2) are two such triplets, then

(3.6)

∥∥∥∥
∫ t

0

e−i(t−s)HF (s)ds

∥∥∥∥
ℓ
p1
γ Lq1(Iγ ;Lr1(Rd))

. ‖F‖
ℓ
p′
2

γ Lq′
2(Iγ ;L

r′
2(Rd))

.

The above statement can be understood as follows. Locally in time, we have the same

Strichartz estimates as for eit∆, a fact that is standard in the presence of a smooth potential

growing at most quadratically in space (see e.g. [9]). In the present case, these estimates

are made global in time thanks to the dispersion in the y directions, corresponding to the

free Hamiltonian H2: there are d − n such directions, so the assumption for (p, r) to be

(d− n)-admissible appears very natural.

Proof. The scheme of this proof follows the same general method as for standard Strichartz

inequalities, by using duality and the TT ∗ argument of Tomas-Stein. The added novelty

here is strongly inspired by the arguments in [10, 18].

The homogeneous inequalities (3.4) and (3.5) are dual to each other and therefore equiv-

alent.

We now prove (3.5). Let F,G ∈ C∞(R×R
d). Then, (3.5) is equivalent to the bilinear

inequality

(3.7)

∣∣∣∣
〈∫

t∈R

eitHF (t)dt,

∫

s∈R

eisHG(s)ds

〉

L2

∣∣∣∣
. ‖F‖

ℓp
′

γ Lq′ (Iγ ;Lr′(Rd))
‖G‖

ℓp
′

γ Lq′ (Iγ ;Lr′ (Rd))
,

which, again by duality, is in turn equivalent to

(3.8)

∥∥∥∥
∫

s∈R

e−i(t−s)HG(s)ds

∥∥∥∥
ℓpγLq(Iγ ;Lr(Rd))

. ‖G‖
ℓp

′
γ Lq′ (Iγ ;Lr′ (Rd))

.

To prove (3.7) we use a partition of unity in time
∑

γ∈Z

χ(t− πγ) = 1, ∀t ∈ R with suppχ ⊂ [−π, π].

We thus have
〈∫

t∈R

eitHF (t)dt,

∫

s∈R

eisHG(s)ds

〉

L2

=
∑

α,β∈Z

∫∫

t,s∈R

〈
χ(t− πα)eitHF (t), χ(t− πβ)eisHG(s)

〉
L2 dt ds.

This sum is now bounded by splitting it into the diagonal terms, |α − β| 6 1, and the

non-diagonal ones, |α− β| > 1.

The sum of the diagonal terms is bounded as follows

∑

|α−β|61

∣∣∣∣
∫∫

t,s∈R

〈
χ(t− πα)eitHF (t), χ(t− πβ)eisHG(s)

〉
L2 dt ds

∣∣∣∣

.
∑

|α−β|61

∥∥∥∥
∫ π

−π

χ(t)ei(t+πα)HF (t+ πα)dt

∥∥∥∥
L2

∥∥∥∥
∫ π

−π

χ(s)ei(s+πβ)HG(s+ πβ)ds

∥∥∥∥
L2

=
∑

|α−β|61

∥∥∥∥
∫ π

−π

χ(t)eitHF (t+ πα)dt

∥∥∥∥
L2

∥∥∥∥
∫ π

−π

χ(s)eisHG(s+ πβ)ds

∥∥∥∥
L2

,
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 11

where, in this last step, we have used the fact that the propagator e−itH is unitary in L2.

At this point, we use Strichartz estimates in their dual form (analogous to (3.5)), which

are available locally in time, for the partially confined operatorH , with d-admissible pairs

(q, r),

(3.9) .
∑

|α−β|61

‖F (·+ πα)‖Lq′ ([−π,π];Lr′(Rd)) ‖G(·+ πβ)‖Lq′ ([−π,π];Lr′(Rd))

. ‖F‖ℓ2γLq′ (Iγ ;Lr′ (Rd)) ‖G‖ℓ2γLq′ (Iγ ;Lr′(Rd)) .

For the non-diagonal part of the sum — the crucial and deeper one — we proceed with a

different approach, involving a localized TT ∗ argument.

∑

|α−β|>1

∣∣∣∣
∫∫

t,s∈R

〈
χ(t− πα)eitHF (t), χ(t− πβ)eisHG(s)

〉
L2 dt ds

∣∣∣∣

=
∑

|α−β|>1

∣∣∣∣
∫∫

t,s∈R

χ(t)χ(s)
〈
F (t+ πα), e−i(t−s+π(α−β))HG(s+ πβ)

〉
L2
dt ds

∣∣∣∣

.
∑

β∈Z

|γ|>1

∣∣∣∣∣

∫∫

(t,s)∈[−π,π]2
χ(t)χ(s)

〈
F (t+ π(β + γ)), e−i(t−s+πγ)HG(s+ πβ)

〉
L2
dt ds

∣∣∣∣∣

.
∑

β∈Z

|γ|>1

∫∫

(t,s)∈[−π,π]2
‖F (t+ π(β + γ))‖Lr′

∥∥∥e−i(t−s+πγ)HG(s+ πβ)
∥∥∥
Lr
.

We have now reached the stage where we use the time decay estimate of the dispersive

propagator. For that, we exploit the commutativity property of the partial propagators

e−itH1 and e−itH2 , as well as the periodicity in time of e−itH1 .

Thus, following the remarks at the beginning of this section, we know that

e−i(t−s+πγ)H = e−i(t−s+πγ)H1e−i(t−s+πγ)H2 .

The propagator for H2 corresponds to the free Schrödinger case in the y variables, thus

has a global time decay with rate t−(d−n)/2, as seen in (3.2). Whereas the propagator for

H1 corresponds to the time periodic harmonic oscillator in the x variables, with local in

time decay with rate t−n/2 from (3.3). So, doing the full L1(Rd) → L∞(Rd) estimate

for the propagator of H by first splitting the variables x and y, then applying the partial

propagators one at a time for each of the corresponding variables and using the periodicity

of H1, we obtain the combined time decay rate

‖e−i(t−s+πγ)Hf‖L∞
x,y(R

d) .
1

|t− s|n/2
1

|γ|(d−n)/2
‖f‖L1

x,y(R
d),

which is local in the t, s variables (from the partially confining operator H1 acting on

the x variables) and global in γ (from the free operator H2 acting on the y variables).

Finally, interpolating the aboveL1 → L∞ estimate with theL2 conservation, we obtain the

intermediate Lr′ → Lr decay to be used within the TT ∗ proof of the Strichartz estimates,

‖e−i(t−s+πγ)Hf‖Lr
x,y(R

d) .
1

|t− s|n(1/2−1/r)

1

|γ|(d−n)(1/2−1/r)
‖f‖Lr′

x,y(R
d),

for 2 6 r 6 ∞.
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12 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

So, plugging this estimate back into the non-diagonal sum inequality, we thus obtain

.
∑

β∈Z

|γ|>1

∫∫

(t,s)∈[−π,π]2
‖F (t+ π(β + γ))‖Lr′

1

|t− s|n( 1
2− 1

r )

1

|γ|(d−n)( 1
2− 1

r )
‖G(s+ πβ)‖Lr′

.
∑

β∈Z

|γ|>1

1

|γ|(d−n)( 1
2− 1

r )

∫∫

(t,s)∈[−π,π]2

1

|t− s|n( 1
2− 1

r )
‖F (t+ π(β + γ))‖Lr′ ‖G(s+ πβ)‖Lr′

.
∑

β∈Z

|γ|>1

1

|γ|(d−n)( 1
2− 1

r )
‖F (·+ π(β + γ))‖Lq′ ([−π,π];Lr′(Rd))‖G(·+ πβ)‖Lq′ ([−π,π];Lr′(Rd)),

where we have used the Hardy-Littlewood-Sobolev inequality in the t, s variables, in the

last step, for (q, r) now an n-admissible pair. To conclude this estimate, we again apply the

Hardy-Littlewood-Sobolev inequality, this time in its discrete version for the γ variable, to

obtain

(3.10) . ‖F‖
ℓp

′
γ Lq′ (Iγ ;Lr′(Rd))

‖G‖
ℓp

′
γ Lq′ (Iγ ;Lr′ (Rd))

,

whenever
2

p
6 (d− n)

(
1

2
− 1

r

)
,

in particular for (p, r) a (d− n)-admissible pair.

To finish the proof of (3.7) we gather the diagonal and non-diagonal estimates, (3.9) and

(3.10), to obtain

∣∣∣∣
〈∫

t∈R

eitHF (t)dt,

∫

s∈R

eisHG(s)ds

〉

L2

∣∣∣∣
. ‖F‖

ℓ2γL
q′
1(Iγ ;Lr′ (Rd))

‖G‖
ℓ2γL

q′
1 (Iγ ;Lr′(Rd))

+ ‖F‖
ℓp

′
γ Lq′2(Iγ ;Lr′(Rd))

‖G‖
ℓp

′
γ Lq′2(Iγ ;Lr′(Rd))

,

where the pair (q1, r) is d-admissible, while (q2, r) is n-admissible. Therefore q′2 < q′1 and

using the inclusion Lq′1(Iγ) ⊂ Lq′2(Iγ), while ℓp
′ ⊂ ℓ2, we obtain (3.7). Thus, we have

established (3.4) and (3.5), as well as (3.8).

There still remains establishing (3.6) to conclude the proof of the theorem. But this finite

interval version follows from the similar global integral estimate (3.8) by using the now

standard Christ-Kiselev lemma, together with interpolation between admissible triplets,

just as in the analogous final stage of a classical Strichartz estimate proof. �

Remark 3.5 (More general potentials). The two properties of e−itH1 that we have used

in the proof of Theorem 3.4 are the existence of local dispersive estimates, and the fact

that such estimates are available periodically in time. The first point remains for smooth

potentials which grow at most quadratically, from [12]. The fact that these dispersive esti-

mates are available periodically in time remains for instance when the harmonic potential

is suitably perturbed with a smooth one (Schwartz class), so the new operator has the same

spectrum as the harmonic oscillator; this has been established in the case n = 1 in [24].

Also, we may consider more general quadratic potentials, when n > 2,

n∑

j=1

ω2
j

x2j
2
, ωj > 0.
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 13

If the ωj’s are rationally dependent, then the above proof can easily be repeated, since

local in time dispersive estimates remain, as well as time periodicity of the propagator

(each component leads to dispersive estimates which are π/ωj-periodic in time). On the

other hand, if the ωj’s are rationally independent, either by using Hermite functions (eigen

decomposition) or by invoking Mehler’s formula, we see that the time periodicity is lost.

The argument that we have followed to obtain global Strichartz estimates no longer works;

the dynamics might be rather involved, typically due to the presence of small divisors. On

the other hand, since Proposition 3.1 only assumes that the flow associated to the operator

P (= 1
2∆x + V (x) here), is bounded on L2, its conclusion remains valid for all quadratic

potentials.

4. EXISTENCE OF WAVE OPERATORS AND SMALL DATA SCATTERING

In this section, we prove Theorem 1.5. The existence of wave operators is obtained by a

fixed point argument in a suitable space, constructed in view of global Strichartz estimates

provided by Theorem 3.4. Asymptotic completeness for small data follows essentially

from the same estimates, plus a standard bootstrap argument.

4.1. Vector fields. As pointed out in the introduction, proving the existence of wave oper-

ator in Σ in the absence of external potential, that is for (1.4), relies on the use of the vector

field x+ it∇. In the case of (1.3), this means that we consider

J = y + it∇y = it ei|y|
2/(2t)∇y

(
e−i|y|2/(2t)·

)
.

In view of the second identity, J acts on the gauge invariant nonlinearity |u|2σu like ∇y ,

and Gagliardo-Nirenberg inequalities involving ∇y export to similar inequalities in terms

of J , with an extra time dependent factor:

(4.1) ‖f‖Lr(Rd) 6
Cr

|t|(d−n)(1/2−1/r)
‖f‖1−d(1/2−1/r)

L2(Rd)
‖(∇x, J)f‖d(1/2−1/r)

L2(Rd)
,

for all 2 6 r 6 2d
d−2 (2 6 r < ∞ if d = 2). Finally, J commutes with the linear part of

(1.3), [i∂t −H, J ] = 0.

We now turn to the x-dependent part of H . In view of the above weighted Gagliardo-

Nirenberg inequality, we will get the same time decay as on R
d−n provided that we can

estimate ∇xu (in L2). However, unlike J , ∇x does not commute with the linear part of

(1.3):

[i∂t −H,∇x] = −x.
We remark that

[i∂t −H,x] = ∇x,

so it is possible to obtain a closed system of estimates for (u, Ju,∇xu, xu). This remark

can be used to construct a solution to (1.3) locally in time, thanks to the Gronwall lemma;

see [26] (see also [5]). However, the above commutators generate an exponentially growing

factor after the use of the Gronwall lemma, an aspect which ruins the algebraic time decay

provided by (4.1) when large time is considered, like in scattering theory. Therefore, we

need to replace the operators∇x and x by adapted operators which enjoy properties similar

to those of J . In the case of the harmonic potential, such operators are available: see e.g.

[5]. We introduce

A1(t) = x sin t− i cos t∇x, A2(t) = x cos t+ i sin t∇x

A3(t) = −i∇y, A4(t) = y + it∇y.
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14 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

To ease the forthcoming formulas, we also set

A0 = Id.

The operators A3 and A4 are the standard ones in the absence of external potential. The

operatorsA1 and A2 are adapted to the harmonic potential, and satisfy
(
A1(t)
−A2(t)

)
=

(
sin t cos t

− cos t sin t

)(
x

−i∇x

)
.

Indeed, the operators A1 and A2 account for the fact that the harmonic oscillator rotates

the phase space at a speed which is uniform in (x, ξ). In particular, we have the pointwise

identity for, say, f ∈ S(Rd),

(4.2) |A1(t)f(x, y)|2 + |A2(t)f(x, y)|2 = |xf(x, y)|2 + |∇xf(x, y)|2, ∀t ∈ R.

Lemma 4.1. For 1 6 j 6 4, the operators Aj satisfy the following properties.

• They correspond to the conjugation of gradient and momentum by the free flow,

A1(t) = e−itH(−i∇x)e
itH , A2(t) = e−itHx eitH ,

A3(t) = e−itH(−i∇y)e
itH , A4(t) = e−itHy eitH .

Therefore, they commute with the linear part of (1.3): [i∂t −H,Aj(t)] = 0.

• They act on gauge invariant nonlinearities like derivatives. In particular, we have

the pointwise estimate
∣∣Aj(t)

(
|u|2σu

)∣∣ . |u|2σ|Aj(t)u|.
• Weighted Gagliardo-Nirenberg inequalities: for all 2 6 r 6 2d

d−2 (2 6 r < ∞ if

d = 2), there exists Kr such that for all f ∈ Σ, t 6= 0,

‖f‖Lr(Rd) 6
Kr

〈t〉(d−n)(1/2−1/r)
‖f‖1−δ

L2(Rd)




4∑

j=1

‖Aj(t)f‖L2(Rd)




δ

with δ = d(1/2− 1/r).

The last two points follow directly from the “nonlinear” counterpart of the “linear”

factorization of the first point:

A1(t)f = −i cos t e− i
2 |x|

2 tan t∇x

(
e

i
2 |x|

2 tan tf
)
,

A2(t)f = i sin t ei|x|
2/(2 tan t)∇x

(
e−i|x|2/(2 tan t)f

)
,

A4(t)f = it ei|y|
2/(2t)∇y

(
e−i|y|2/(2t)f

)
.

We emphasize that analogous operators are available for anisotropic quadratic potentials.

On the other hand, the existence of operators enjoying the above three properties seems to

be bound to potentials which are polynomials of degree at most two ([8]).

In view of the first point in Lemma 4.1, we have the equivalence, in the sense of equiv-

alence of norms:

‖eitHu(t)− u−‖Σ ∼
4∑

j=0

‖Aj(t)u(t)−Aj(t)e
−itHu−‖L2

∼
4∑

j=0

‖Aj(t)u(t)− e−itHAj(0)u−‖L2.
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 15

4.2. The fixed point argument. Let u− ∈ Σ. For γ0 6 −1, we denote

Jγ0 = (−∞, π(γ0 + 1)) =
⋃

γ6γ0

Iγ ,

and we set

Xγ0 =
{
u ∈ L∞(Jγ0 ;H

1(Rd)) ; for all j ∈ {0, . . . , 4},

‖Aju‖L∞(Jγ0 ;L
2) 6 2‖Aj(0)u−‖L2 , ‖Aju‖ℓp

γ6γ0
Lq(Iγ ;Lr) 6 2Cr‖Aj(0)u−‖L2

}
,

where Cr stems from Theorem 3.4. The indices p, q, r are precised below: in view of

Theorem 3.4, they are such that (q, r) is d-admissible, and (p, r) is (d − n)-admissible.

Theorem 1.5 follows from a fixed point argument on Duhamel’s formula

u(t) = e−itHu− − iλ

∫ t

−∞
e−i(t−s)H

(
|u|2σu

)
(s)ds =: Φ(u)(t),

applied in Xγ0 for γ0 ≪ −1 and (p, q, r) well chosen. Thanks to Theorem 3.4 and

Lemma 4.1, the argument becomes rather close to the proof the second point in Theo-

rem 1.1, for which the reader is referred to, e.g., [9, 14].

Proof of Theorem 1.5. The key step, for the stability of Xγ0 under the action of the map Φ
as well as for the contraction ofΦ onXγ0 with respect to the weaker norm ℓpγ6γ0

Lq(Iγ ;L
r)

(Kato’s method, see [9]: Xγ0 equipped with that norm is complete, so it is not necessary to

prove contraction for norms involving derivatives of Φ), consists in controlling B(|u|2σu)
in, say, ℓp

′

γ6γ0
Lq′(Iγ ;L

r′), for all B ∈ {Id, A1, . . . , A4}. This is so thanks to Strichartz

estimates, and to the first point in Lemma 4.1. In view of the second point in Lemma 4.1

and Hölder inequality,
∥∥B(|u|2σu)

∥∥
ℓp

′

γ6γ0
Lq′ (Iγ ;Lr′ )

. ‖u‖2σℓθ
γ6γ0

Lω(Iγ ;Lk)‖Bu‖ℓpγ6γ0
Lq(Iγ ;Lr),

with a constant independent of γ0, provided that

(4.3)
1

p′
=

1

p
+

2σ

θ
,

1

q′
=

1

q
+

2σ

ω
,

1

r′
=

1

r
+

2σ

k
.

If we can find (p, q, r) with the above algebraic requirements, such that

u ∈ Xγ0 =⇒ u ∈ ℓθγ6γ0
Lω(Iγ ;L

k),

with (θ, ω, k) given like above, for some finite θ, then the result follows, up to taking |γ0|
sufficiently large.

Let u ∈ Xγ0 . In view of the last point in Lemma 4.1,

‖u(t)‖Lk(Rd) 6
C

|t|(d−n)(1/2−1/k)
, t < π(γ0 + 1),

whereC depends only on d, n, k and ‖u−‖Σ. Since |Iγ | = 2π, we infer for any ω, γ 6 γ0,

‖u(t)‖Lω(Iγ ;Lk(Rd)) 6 (2π)1/ω‖u(t)‖L∞(Iγ ;Lk(Rd)) .
1

|γ|(d−n)(1/2−1/k)
.

Therefore,

Xγ0 ⊂ ℓθγ6γ0
Lω(Iγ ;L

k) as soon as (d− n)

(
1

2
− 1

k

)
θ > 1.

We distinguish two cases: d = 2 and d > 3.
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16 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

Case d = 2. Then necessarily, n = 1. We take r = 2 + ε, with 0 < ε ≪ 1. In view of

(4.3), we compute:

k =
2σ(2 + ε)

ε
, p

4(2 + ε)

ε
, q =

2(2 + ε)

ε
, θ = 2σ

4 + 2ε

4 + ε
, ω = (2 + ε)σ,

hence

(d− n)

(
1

2
− 1

k

)
θ =

4σ + 2(σ − 1)ε

4 + ε
.

This is larger than 1 for ε > 0 sufficiently small as soon as σ > 1.

Case d > 3. We consider the largest possible value for k, which corresponds to the

endpoint of Sobolev embedding,

k =
2d

d− 2
.

In view of (4.3), we compute

r =
2d

d− (d− 2)σ
.

Since the nonlinearity is energy-subcritical, σ < 2/(d− 2), we have 2 6 r < 2d/(d− 2),
so this value is acceptable. We also have

p =
4d

(d− n)σ(d− 2)
, q =

4

σ(d − 2)
, θ =

4dσ

2d− (d− n)(d− 2)σ
,

where the last formula defines a positive θ, since σ < 2/(d− 2) and n > 0. We infer

(d− n)

(
1

2
− 1

k

)
θ =

d− n

d

4dσ

2d− (d− n)(d − 2)σ
.

This quantity is larger than 1 if and only if

σ >
2d

d+ 2

1

d− n
,

which is the condition stated in Theorem 1.5. �

4.3. Asymptotic completeness for small data. We now turn to the proof of the second

part of Theorem 1.5. Resume exactly the same computations as the previous subsection.

For B ∈ {Id, A1, . . . , A4},

‖Bu‖ℓp
γ>1

Lq(Iγ ;Lr) . ‖B(0)u0‖L2 + ‖u‖2σℓθ
γ>1

Lω(Iγ ;Lk)‖Bu‖ℓpγ>1
Lq(Iγ ;Lr).

For t > 0, we estimate, in view of the last point in Lemma 4.1,

‖u(t)‖Lk(Rd) 6
C

〈t〉(d−n)(1/2−1/k)
‖u0‖1−δ




4∑

j=1

‖Aj(t)u‖L2




δ

,

with δ = d(1/2− 1/k). Now let

M(t) =
4∑

j=0

(
‖Aju‖ℓp

06γ.t
Lq(Iγ ;Lr) + ‖Aju‖L∞([0,t];L2)

)
.

It satisfies

M(t) . ‖u0‖Σ +M(t)1+2σδ,

with δ as above. Recall that standard bootstrap argument:
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 17

Lemma 4.2 (Bootstrap argument). Let M = M(t) be a nonnegative continuous function

on [0, T ] such that, for every t ∈ [0, T ],

M(t) 6 ε1 + ε2M(t)κ,

where ε1, ε2 > 0 and κ > 1 are constants such that

ε1 <

(
1− 1

κ

)
1

(κε2)1/(κ−1)
, M(0) 6

1

(κε2)1/(κ−1)
.

Then, for every t ∈ [0, T ], we have

M(t) 6
κ

κ− 1
ε1.

We infer that M is bounded for all t > 0 provided that ‖u0‖Σ is sufficiently small.

Once we know that Aju ∈ L∞([0,∞);L2) for all j ∈ {0, . . . , 4}, we readily infer, by

using Strichartz estimates again, that
(
eitHAj(t)u

)
t>0

is a Cauchy sequence as t → ∞,

hence the result.

5. ANISOTROPIC MORAWETZ ESTIMATES

In this section, we prove anisotropic Morawetz estimates, as stated in Proposition 1.9.

Proof. We proceed as in [16], by working on quadratic quantities which appear naturally

in the hydrodynamical reformulation of (1.3). We deduce a monotonicity formula for an

appropriate virial quantity and then we infer the a priori bounds for the desired quantities.

To shorten the notations, we set z = (x, y). In [16] the calculations rely on the conservation

laws for the first two momenta related to the wave function: if u is a solution to (1.3), then

we have

(5.1)





∂tρ+ div J = 0

∂tJ + div (Re(∇ū⊗∇u)) + λ
σ

σ + 1
∇ρσ+1 + ρ∇V =

1

4
∇∆ρ,

where ρ(t, z) := |u(t, z)|2 and J(t, z) := Im(ū∇u)(t, z). Let us define the virial potential

I(t) :=
1

2

∫∫

Rd×Rd

ρ(t, z)a(|z − z′|)ρ(t, z′) dzdz′ = 1

2
〈ρ, a ∗ ρ〉,

where a is a sufficiently smooth weight function which will be chosen later. Here 〈·, ·〉
denotes the scalar product in L2(Rd). By using (5.1), we see that the time derivative of

I(t) reads

(5.2)
d

dt
I(t) = −〈ρ,∇a ∗ J〉 =

∫∫
ρ(t, z′)∇a(|z − z′|) · J(t, z) dz′dz =:M(t),

where M(t) is the Morawetz action. By using again the balance laws (5.1) we have

d

dt
M(t) =− 〈J,∇2a ∗ J〉+ 〈ρ,∇2a ∗ Re(∇ū⊗∇u)〉+ λσ

σ + 1
〈ρ,∆a ∗ ρσ+1〉

− 〈ρ,∇a ∗ (ρ∇V )〉 − 1

4
〈ρ,∆a ∗∆ρ〉

=− 〈Im(ū∇u),∇2a ∗ Im(ū∇u)〉+ 〈ρ,∇2a ∗ (∇ū⊗∇u)〉

+
λσ

σ + 1
〈ρ,∆a ∗ ρσ+1〉 − 〈ρ,∇a ∗ (ρ∇V )〉 − 1

4
〈ρ,∆a ∗∆ρ〉,
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18 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

where in the second term we dropped the real part because of the symmetry of ∇2a. For

the first term we have

〈Im(ū∇u),∇2a ∗ Im(ū∇u)〉 =〈ū∇u,∇2a ∗ (ū∇u)〉 − 〈Re(ū∇u),∇2a ∗ Re(ū∇u)〉

=〈ū∇u,∇2a ∗ (ū∇u)〉 − 1

4
〈∇ρ,∇2a ∗ ∇ρ〉,

hence we may write

(5.3)

d

dt
M(t) =− 〈ū∇u,∇2a ∗ (ū∇u)〉+ 〈ρ,∇2a ∗ (∇ū⊗∇u)〉

+
1

4
〈∇ρ,∇2a ∗ ∇ρ〉 − 1

4
〈ρ,∆a ∗∆ρ〉

+
λσ

σ + 1
〈ρ,∆a ∗ ρσ+1〉

−
∫∫

ρ(t, z′)ρ(t, z)∇a(|z − z′|) · ∇V (z)dzdz′.

Let us consider the second line in (5.3). It is equal to

1

4
〈∇ρ,∇2a ∗ ∇ρ〉 − 1

4
〈ρ,∆a ∗∆ρ〉 = 1

2
〈∇ρ,∇2a ∗ ∇ρ〉 = 1

2
〈∇ρ,∆a ∗ ∇ρ〉.

Now, we notice the first two terms on the right hand side of (5.3) may be rewritten as

− 〈ū∇u,∇2a ∗ (ū∇u)〉+ 〈ρ,∇2a ∗ (∇ū⊗∇u)〉 =
1

2

∫∫

Rd×Rd

∇2a(|z − z′|) · (ū(t, z′)∇ū(t, z)− ū(t, z)∇ū(t, z′))

· (u(t, z′)∇u(t, z)− u(t, z)∇u(t, z′)) dz′dz,

which is non-negative if the Hessian matrix ∇2a is non-negative definite. On the other

hand, by choosing the weight a(|z|) depending only on y ∈ R
d−n the last term in (5.3)

involving the potential V = V (x), vanishes. Therefore, the natural choice for the weight

is a(|z|) = |y|. In this way we have

(5.4)
d

dt
M(t) >

1

2
〈∇yρ,∆ya ∗ ∇yρ〉+

λσ

σ + 1
〈ρ,∆ya ∗ ρσ+1〉.

Notice that ∆ya(|y|) = d−n−1
|y| is, up to a multiplicative constant, the integral kernel of the

operator (−∆y)
− d−n−1

2 , that is,

(
(−∆y)

− d−n−1
2 f

)
(y) =

∫

Rd−n

c

|y − y′|f(y
′) dy′.

Thus, by recalling z = (x, y), we obtain

∫∫

Rd×Rd

1

|y − y′|∇yρ(t, z
′) · ∇yρ(t, z) dz

′dz

=

∫∫∫

Rn×Rn×Rd−n

∇yρ(t, x, y) · ∇y(−∆y)
− d−n−1

2 ρ(t, x′, y) dxdx′dy.

Hence, if we define the marginal of the mass density

R(t, y) :=

∫

Rn

ρ(t, x, y) dx,
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 19

the last integral also reads
∫

Rd−n

∣∣∣|∇y |
3−(d−n)

2 R(t, y)
∣∣∣
2

dy.

We now plug this expression into (5.4) and we integrate in time. Furthermore, since λ > 0
the second term in the right hand side in (5.4) is positive. We then infer

(5.5)

∫ T

0

∫

Rd−n

∣∣∣|∇y|
3−(d−n)

2 R(t, y)
∣∣∣
2

dydt 6 C sup
t∈[0,T ]

M(t).

Furthermore, with our choice of the weight a(|z|), we have

M(t) =

∫∫
ρ(t, z′)

y − y′

|y − y′| · Im(ū∇yu)(t, z) dz
′dz 6 ‖u0‖3L2(Rd)‖∇yu(t)‖L2(Rd),

where we have used the conservation of the L2-norm of u (V is real-valued). We infer that

the right hand side in (5.5) is uniformly bounded,
∫ T

0

∫

Rd−n

∣∣∣|∇y|
3−(d−n)

2 R(t, y)
∣∣∣
2

dydt 6 C‖u0‖3L2(Rd) sup
t∈R

‖∇yu(t)‖L2(Rd).

By letting T go to infinity, we prove (1.6). �

Remark 5.1. Let us come back to (5.4) in the proof of Proposition 1.9. We see that the

second term in the right hand side is nonnegative, and is equal to

λσ

σ + 1

∫∫
ρ(t, z′)

d− n− 1

|y − y′| ρ
σ+1(t, z) dz′dz

6
λσ

σ + 1

∫∫
d− n− 1

|y − y′| ρ
σ+2
2 (t, z′)ρ

σ+2
2 (t, z) dz′dz.

As before, 1
|y−y′| is the integral kernel of (−∆y)

− d−n−1
2 , hence the last integral may be

written in the following way,

C

∫

Rd−n

∣∣∣∣|∇y|−
d−n−1

2

∫

Rn

ρ
σ+2
2 (t, x, y) dx

∣∣∣∣
2

dy.

Consequently, from Morawetz estimates we also infer the following a priori bound

∫∫

R×Rd−n

∣∣∣∣|∇y|−
d−n−1

2

∫
ρ(σ+2)/2(t, x, y) dx

∣∣∣∣
2

dydt 6 C‖u0‖3L2 sup
t∈R

‖∇yu(t)‖L2 .

This term does not appear in the statement of Proposition 1.9, since (1.6) is the only esti-

mate we are going to use to prove asymptotic completeness.

6. ASYMPTOTIC COMPLETENESS

6.1. Outline of the proof and technical remarks. The strategy of the proof of Theo-

rem 1.10 is the same as in e.g. [29] (Section 5.1, for the one-dimensional example), or

[1]. Global in time estimates for the solution u are obtained by an inductive bootstrap

argument:

Lemma 6.1. Let t0 ∈ R, h ∈ Lq
loc([t0,∞)) for some 1 6 q 6 ∞. Suppose that there

exist C0, η, κ > 0, and f ∈ Lp([t0,∞)) with 1 6 p <∞, such that for all t′ > t > t0,

(6.1) ‖h‖Lq([t,t′]) 6 C0 + ‖f‖ηLp([t,t′])‖h‖κLq([t,t′]).
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20 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

Then h is globally integrable,

h ∈ Lq([t0,∞)).

Proof. If κ > 1, split [t0,∞) into finitely many sub-intervals Ij , on which ‖f‖ηLp(Ij)
6 ε2,

with ε2 = ε2(η, f, C0, κ) so small that Lemma 4.2 implies

‖h‖Lq(Ij) 6
κ

κ− 1
C0,

and the result follows. If κ 6 1, we may invoke Young inequality ab . aq + bq
′

, 1 < q <
∞, to fall back into the first case. �

Remark 6.2. When κ > 1, it is crucial in the above lemma that C0 is independent of t, t′.
If we suppose for instance that we have inequalities of the form

M(t′) 6M(t) + ‖f‖ηLp([t,t′])M(t′)κ,

then M need not be bounded. Consider for instance M(t) = t: for t′ > t > 1,

t′ = t+ t′ − t = t+
t′ − t

tt′
tt′ 6 t+

t′ − t

tt′
(t′)2,

that is,

M(t′) 6M(t) +

(∫ t′

t

dt

t2

)
M(t′)2.

We also need a Gronwall type argument:

Lemma 6.3. Let t0 ∈ R, M ∈ C([t0,∞)). Suppose that there exist C0, η, δ > 0, and

f ∈ Lp([t0,∞)) with 1 6 p <∞, such that for all t′ > t > t0,

(6.2) M(t′) 6M(t) + ‖f‖ηLp([t,t′])M(t′).

Then M is bounded,M ∈ L∞([t0,∞)).

Proof. Split [t0,∞) into finitely many sub-intervals Ij ,

[t0,∞) =

N⋃

j=0

Ij , Ij = [tj , tj+1), tN+1 = ∞,

on which ‖f‖ηLp(Ij)
6 1/2. Then

sup
t∈Ij

M(t) 6 2M(tj),

hence

sup
t>t0

M(t) 6 2N+1M(t0).

�

Now the goal is to use Strichartz inequalities and Hölder inequality in order to obtain

(6.2) with h(t) = ‖u(t)‖Z for some suitable Z , so that the existence of such a function

f follows from the conservation of energy and Morawetz estimates. Lemma 6.3 is then

applied to M(t) = ‖Bu‖Lp([0,t];Z), where B ∈ {A1, . . . , A4}. Essentially, the nonlinear

estimates of Lemma 6.1 become linear estimates as in Lemma 6.3 because all the vector-

fields Aj act like first order derivatives on gauge invariant nonlinearities. Note that in view
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 21

of the conservation of energy (see Proposition 1.4) and the identity (4.2), we may replace

h at the first step with

h(t) =

3∑

j=0

‖Aj(t)u‖Z ,

since the conservations of mass and energy yield an a priori bound in

Σanis = {f ∈ L2(Rd), xf,∇xf,∇yf ∈ L2(Rd)}.
In that case, only the operator A4, which contains the large time decay information, is left

out. We will follow both approaches below.

At this stage, the strategy may appear relatively standard. The less standard aspect is

that the numerology associated to Strichartz estimates in the present framework does not

allow to follow directly the above road map by working in ℓpγL
q(Iγ , L

r), with (p, q, r) as

in Theorem 3.4. Indeed, if we apply Hölder inequality to the quantity

‖|u|2σu‖
ℓ
p′1
γ Lq′

1Lr′
1
,

which appear after the use of inhomogeneous Strichartz estimates, to bound it by

‖u‖(2σ+1)(1−η)

ℓθγL
ωLs ‖u‖(2σ+1)η

ℓpγLqLr ,

where η ∈ (0, 1), and (p1, q1, r1), (p, q, r) are triplets as in Theorem 3.4, with

1 =
1

p1
+

(2σ + 1)(1− η)

θ
+

(2σ + 1)η

p
,

1 =
1

q1
+

(2σ + 1)(1− η)

ω
+

(2σ + 1)η

q
,

1 =
1

r1
+

(2σ + 1)(1− η)

s
+

(2σ + 1)η

r
.

Then since d − n < d, we necessarily have θ < ω, unless r1 = r = 2, a case where

Strichartz estimates are not even needed (energy estimate). Unless we proceed as in Sec-

tion 4, which means unless we use Gagliardo-Nirenberg inequality, we cannot claim that

u ∈ ℓθγL
ωLs with θ < ω, by invoking only Morawetz estimates and the conservation of

energy. To overcome this issue, we shall use the Strichartz estimates from Proposition 3.1

(which, in our case, follow essentially from [31], since the harmonic oscillator possesses

an eigenbasis): the above space Z will be of the form Lr
yL

2
x, or a more sophisticated ver-

sion of it. We prove Theorem 1.10 from the easiest case to the most involved technically:

if d = 3 or 4, a rather straightforward estimate allows to apply Lemmas 6.1 and 6.3, suc-

cessively. When d = 2, the same strategy works for 2 < σ < 4: since this does not cover

the whole range of values for σ, we directly present another approach, more in the spirit of

[32].

6.2. The case d = 4. In addition to the global existence result stated in Proposition 1.4,

Proposition 1.9 yields the information u ∈ L4
tL

4
x,y. LetB ∈ {Id, A1, A2, A3}. As recalled

above, Bu ∈ L∞
t L

2
x,y from the conservation of the energy (see also (4.2)). In view of

Proposition 3.1 and Hölder inequality, we have, since (103 ,
10
3 ) is 3-admissible, for t ∈ I

any interval

‖Bu‖
L

10/3
t L

10/3
y L2

x
. ‖u0‖Σ + ‖|u|2σBu‖

L
10/7
t L

10/7
y L2

x

. ‖u0‖Σ + ‖u‖2σL5σ
t L5σ

y L∞
x
‖Bu‖

L
10/3
t L

10/3
y L2

x
.
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22 P. ANTONELLI, R. CARLES, AND J. DRUMOND SILVA

Since n = 1, we invoke the standard estimate

‖f‖L∞(R) 6
√
2‖f‖1/2L2(R)‖∂xf‖

1/2
L2(R),

to infer

‖u‖L5σ
t L5σ

y L∞
x

. ‖u‖1/2
Lp

tL
p
yL2

x
‖u‖1/2

L
10/3
t L

10/3
y H1

x

, where
1

p
=

4− 3σ

10σ
.

For σ ∈ (23 , 1), we have
1

10
<

1

p
<

3

10
,

thus we can always interpolate

‖u‖Lp
tL

p
yL2

x
6 ‖u‖αL4

tL
4
yL

2
x
‖u‖1−α

Lq
tL

q
yL2

x
,

with 0 < α < 1, and where q is either 10 or 10
3 . The value 10 is motivated by the fact that

the pair (10, 10) in 3-admissible at the level of Ḣ1 (instead of L2 so far), and so

‖u‖L10
t L10

y L2
x
. ‖∇yu‖L10

t L
30/13
y L2

x
,

where the pair (10, 3013 ) is 3-admissible. Letting

h(t) = sup
(p,r) 3−admissible

3∑

j=0

‖Aj(t)u‖pLr
yL

2
x
,

we conclude that this function satisfies, for all interval I ,

‖h‖L1(I) . 1 + ‖u‖βL4(I;L4
yL

2
x)
‖h‖κL1(I),

for some β, κ > 0. Lemma 6.1 yields

u,A1u,A2u,A3u ∈ Lp(R;Lr
yL

2
x)

for all 3-admissible pairs (p, r). Now taking B = A4 in the above estimate, Lemma 6.3

yields A4u ∈ Lp(R;Lr
yL

2
x). Theorem 1.10 follows for d = 4, thanks to the classical

arguments recalled in Section 4.

6.3. The case d = 3. We now have the a priori information |∇y|1/2
(
|u|2
)
∈ L2

tL
2
yL

1
x. In

view of Sobolev embedding, we infer

‖u‖2L4
tL

8
yL

2
x
= ‖|u|2‖L2

tL
4
yL

1
x
.
∥∥∥|∇y |1/2

(
|u|2
)∥∥∥

L2
tL

2
yL

1
x

<∞.

We then proceed as in the case d = 4. Notice that (4, 4) is 2-admissible. For B ∈
{Id, A1, A2, A3},

‖Bu‖L4
tL

4
yL

2
x
. ‖u0‖Σ + ‖|u|2σBu‖

L
4/3
t L

4/3
y L2

x

. ‖u0‖Σ + ‖u‖2σL4σ
t L4σ

y L∞
x
‖Bu‖L4

tL
4
yL

2
x
.

We interpolate the nonlinear potential by

‖u‖L4σ
t L4σ

y L∞
x

. ‖u‖θ
L

8σ
2−σ
t L

8σ
2−σ
y L2

x

‖u‖1−θ
L4

tL
4
yH

1
x
, θ =

2(σ − 1)

3σ − 2
,

and we note that 0 < θ < 1/2 since 1 < σ < 2. We interpolate again to introduce the

quantity controlled by Morawetz estimate,

‖u‖
L

8σ
2−σ
t L

8σ
2−σ
y L2

x

6 ‖u‖1−α

L∞
t L

8(3σ−2)
2−σ

y L2
x

‖u‖αL4
tL

8
yL

2
x
, α =

2− σ

2σ
∈ (0, 1).
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SCATTERING FOR NLS UNDER PARTIAL CONFINEMENT 23

Notice that y ∈ R
2, so by Sobolev embedding,

‖u‖
L∞

t L

8(3σ−2)
2−σ

y L2
x

. ‖u‖L∞
t H1

yL
2
x
. ‖u0‖Σ,

where the last inequality stems from Proposition 1.4. We can then conclude as in the case

d = 4, by considering first

h(t) =

3∑

j=0

‖Aj(t)u‖4L4
yL

2
x
,

hence Theorem 1.10 in the case d = 3.

6.4. The case d = 2. In this case, instead of working mainly with an L2 regularity in

x, we consider a Banach algebra. Since x is associated to a harmonic oscillator, it is not

sensible to require only a Sobolev type regularity of the form Hs
x, since the harmonic

oscillator rotates the phase space (see e.g. [6]). Instead, we consider the domain of the

fractional harmonic oscillator: for s > 0 a real number, let

Σs
x =

{
f ∈ L2(R), ‖f‖Σs

x
:= ‖f‖L2(R) +

∥∥∥
(
−∂2x + x2

)s/2
f
∥∥∥
L2(R)

<∞
}
.

We know from [3, Theorem 2.1] that (for any nonnegative real number s) the above norm

enjoys the following equivalence,

‖f‖Σs
x
∼ ‖f‖L2(R) + ‖f‖Ḣs(R) + ‖|x|sf‖L2(R).

In particular, Σs
x is a Banach algebra as soon as s > 1/2.

Lemma 6.4. Let d > 2, 1 6 n 6 d−1, and 0 6 s 6 1. Then for all u0 ∈ L2
y(R

d−n; Σs
x),

all (d − n)-admissible pairs (p1, r1) and (p2, r2), there exists Cr1,r2 such that for all

interval I ∋ 0, the solution to

i∂tu = Hu+ F, u|t=0 = u0,

satisfies:

‖u‖Lp1
t (I;L

r1
y Σs

x)
6 Cr1,r2

(
‖u0‖L2

yΣ
s
x
+ ‖F‖

L
p′
2

t (I;L
r′
2

y Σs
x)

)
.

Proof. For s = 0, the result is a particular case of Proposition 2.2 (or Proposition 3.1). For

s = 1, apply the vector-fields A1 and A2 to obtain the result from the case s = 0 and the

identity (4.2). The case 0 < s < 1 follows by interpolation. �

Morawetz estimate yields |u|2 ∈ L2
t Ḣ

1
yL

1
x. In view of the one-dimensional inequality

‖f‖L∞
y

. ‖f‖1/3L1
y
‖∂yf‖2/3L2

y
,

we infer the analogue of the property established in [29], u ∈ L6
tL

∞
y L

2
x.

On the other hand, the conservation of mass and energy yields

u ∈ L∞
t H

1/2−α
y Σ1/2+α

x , 0 6 α 6
1

2
.

Sobolev embedding yields (d− n = 1)

u ∈ L∞
t L

1/α
y Σ1/2+α

x , 0 6 α 6
1

2
.

By interpolation, we infer

u ∈ L
6/α
t L1/(α(1−α))

y Σ1/2+δ
x , 0 < α <

1

2
, δ = (1− α)

(
1

2
+ α

)
− 1

2
> 0.
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For α ∈ (0, 1/2) to be fixed, and (p, r) a 1-admissible pair to fix too, write

‖|u|2σu‖
Lp′

t Lr′
y Hx

. ‖u‖(2σ+1)η

Lp
tL

r
yHx

‖u‖(2σ+1)(1−η)

L
6/α
t L

1/(α(1−α))
y Hx

,

where Hx = Σ
1/2+δ
x , and η ∈ (0, 1). We have used Hölder inequality, with

1 =
(2σ + 1)η + 1

p
+ (2σ + 1)(1 − η)

α

6

1 =
(2σ + 1)η + 1

r
+ (2σ + 1)(1 − η)α(1 − α).(6.3)

Recalling that (p, r) is 1-admissible, we infer that necessarily,

5

4
=

(2σ + 1)η

4
+ (2σ + 1)(1− η)α

(
2

3
− α

2

)
.

Now let 0 < ε≪ 1, and define η by the identity

5 = (2σ + 1)η + ε.

Since σ > 2, for ε sufficiently small, this defines indeed η ∈ (0, 1). Then, up to decreasing

ε, fix 0 < α < 1/2 so that

(2σ + 1)(1− η)α

(
2

3
− α

2

)
= ε.

To define all the parameters, we now recall that r is given by (6.3): we check that 2 < r <
6, with r ≈ 6. Once all these parameters are fixed, Strichartz inequality yields

‖u‖Lp
tL

r
yHx

. ‖u0‖Σ + ‖u‖2σ−4+ε

L
6/α
t L

1/(α(1−α))
y Hx

‖u‖5−ε
Lp

tL
r
yHx

.

Following the same argument as in other dimensions, we infer u ∈ Lp(R;Lr
yHx), and

thus u ∈ Lp1(R;Lr1
y Hx) for all 1-admissible pairs (p1, r1).

For B ∈ {A0, . . . , A4}, we also have, on any interval I = [t0, t1],

‖Bu‖Lp
tL

r
yL

2
x
. ‖B(t0)u‖L2 + ‖u‖2σ−4+ε

L
6/α
t L

1/(α(1−α))
y L∞

x

‖u‖4−ε
Lp

tL
r
yL

∞
x
‖Bu‖Lp

tL
r
yL

2
x

. ‖B(t0)u‖L2 + ‖u‖2σ−4+ε

L
6/α
t L

1/(α(1−α))
y Hx

‖u‖4−ε
Lp

tL
r
yHx

‖Bu‖Lp
tL

r
yL

2
x
,

where we have used the embedding Hx ⊂ L∞
x . Invoking Lemma 6.3, we conclude

Bu ∈ Lp(R;Lr
yL

2
x), hence Bu ∈ Lp1(R;Lr1

y L
2
x) for all 1-admissible pairs (p1, r1).

Theorem 1.10 then follows in the case d = 2.

APPENDIX A. EXISTENCE OF LONG RANGE EFFECTS: FORMAL PROOF

Lemma A.1. Let f ∈ L2(Rn) and g ∈ L2(Rd−n). Consider the solution u to

(A.1) i∂tu = Hu, u(0, x, y) = f(x)g(y).

Then as t→ +∞,

u(t, x, y) = eitH1f(x)⊗ 1

(it)(d−n)/2
F2g

(y
t

)
ei

|y|2

2t + o(1) in L2(Rd),

where F2 stands for the partial Fourier transform with respect to y.
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The lemma is straightforward, since

u(t, x, y) = eitH1f(x)⊗ eitH2g(y).

Following the formal argument given in [14], the above lemma suggests that for σ 6
1/(d − n), long range effects are present in (1.3). Assume λ = 1 for simplicity. Let

u ∈ C([T,∞);L2(Rd)) be a solution of (1.3) such that there exists u+ ∈ L2(Rd) with

u+(x, y) = f(x)g(y) and
∥∥u(t)− e−itHu+

∥∥
L2 −→

t→+∞
0.

Formal computations indicate that necessarily, u+ ≡ 0 and u ≡ 0: the linear and nonlinear

dynamics are no longer comparable, due to long range effects. To see this, let ψ = ψ1⊗ψ2

with ψ1 ∈ C∞
0 (Rn), ψ2 ∈ C∞

0 (Rd−n), and t2 > t1 > T . By assumption,

〈
ψ, eit2Hu(t2)− eit1Hu(t1)

〉
= −i

∫ t2

t1

〈
e−itHψ,

(
|u|2σu

)
(t)
〉
dt

goes to zero as t1, t2 → +∞. The above lemma implies that for t→ +∞, we have

〈
e−itHψ,

(
|u|2σu

)
(t)
〉
≈ 1

t(d−n)(σ+1)

∫

Rn

F (t, x)dx

∫

Rd−n

G
(y
t

)
dy,

for F = e−itH1ψ1|e−itH1f |2σe−itH1f and G = F2ψ2|F2g|2σF2g. With the change of

variable y 7→ ty, the above integral is equal to

1

t(d−n)σ

(∫

Rn

F (t, x)dx

)(∫

Rd−n

G(y)dy

)
.

Now F is periodic in time, with arbitrary mean value. But t 7→ 1/t(d−n)σ is not integrable,

so the above quantity is not integrable in time, unless u+ = 0. The conservation of mass

then implies u ≡ 0.
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