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Abstract NTRU is a public-key cryptosystem based on polynomial rings over Z. Re-

placing Z with the ring of Eisenstein integers yields ETRU. We prove through both

theory and implementation that ETRU is faster and has smaller keys for the same or

better level of security than does NTRU.
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1 Introduction

The NTRU public key cryptosystem was proposed by J. Hoffstein, J. Pipher and

J. H. Silverman in 1996. It has since been standardized [1], [15] and has been imple-

mented both for commercial applications [28] and open-source models [2]. In compari-

son with RSA and ECC, NTRU is faster and has significantly smaller keys. Moreover,

because its security is conjectured to rely on the hardness of certain lattice prob-

lems, which are not known to be susceptible to quantum attack, NTRU is viewed as a

quantum-resistant cryptosystem. One weakness of NTRU is the possibility of decryp-

tion failure; however, parameters may be chosen to minimize or eliminate this error.

NTRU’s security has been and continues to be scrutinized by the cryptographic com-

munity, as a consequence of which the original design underwent several improvements

over its first decade.

NTRU keys are truncated polynomials with integer coefficients. An important di-

rection for research about NTRU is the development and analysis of variants in which

the integers are replaced by elements of another ring, such as the Gaussian integers

[18], integer matrices [4] or quaternion algebras [22]. The current paper was motivated

by [25], in which the integers were replaced with the ring of Eisenstein integers, with
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the resulting cryptosystem named ETRU. The theoretical functionality of ETRU, and

of other variants over suitable Dedekind domains, was proven in [25], but its imple-

mentation, and the study of its actual efficiency, was left as an open problem.

In this paper we show that in the basic model ETRU: is faster and has smaller key

sizes than NTRU; allows simple encoding of binary messages; and affords a level of

security equal to or greater than NTRU. We present a theoretical analysis supported

by experimental data, using C++ and Java implementations of ETRU. We use these

to experimentally demonstrate the validity of the decryption failure model. We also

compare ETRU and NTRU in terms of both their efficiency and their security in light

of meet-in-the-middle and lattice attacks. We claim that this presentation of a thorough

slate of analytical and experimental evidence to support our claims of greater efficiency

and security of an NTRU-variant is an important new contribution to the literature.

Both our division algorithm for Eisenstein integers (Algorithm 1) and the choice

of lattice embedding (see Section 8) are integral, thus significantly improving their

efficiency over the complex-valued versions proposed in [25]. As [25] was devoted to

proving the functionality of NTRU over Dedekind rings, as well as the correctness of

the division scheme and the use of a lattice embedding, we do not repeat any of those

proofs here.

This paper also builds on the preliminary results obtained in [17] (unpublished),

where the first author gave a first implementation of ETRU, based on [25], as well

as deriving the decryption failure model presented here in Section 6.3, adapting the

meet-in-the-middle attack to ETRU (as in Section 7.2) and implementing the BKZ

lattice reduction algorithms used here in Section 8. The current article includes further

improvements and deeper analysis, including: Algorithm 1 and further improvements

to the efficiency of operations in ETRU; further analysis of decryption failure in Sec-

tion 6.4; a stronger meet-in-the-middle attack in Section 7 and explicit comparisons of

lattice security (Section 8) and keysizes (Theorem 3) for ETRU vs NTRU at compa-

rable parameter sets.

Both ETRU and NTRU were implemented in Java and C++, using Shoup’s number

theory library for C++ [29]. All timed experiments were performed on a desktop PC

with a 2.33 GHz Intel Core2 Quad Q8200 processor running the Windows Vista (64-bit)

operating system.

The paper is organized as follows. In Section 2 we introduce the basic form of the

NTRU cryptosystem. In Section 3 we present the Eisenstein integers, proving some

necessary algebraic results including Theorem 2, towards giving the details necessary

for the implementation of the ETRU cryptosystem. At the end of this section we

establish how to compare parameter sets of ETRU and NTRU. We then analyze the

speed of the ETRU cryptosystem in comparison with NTRU at comparable parameter

sets in Section 4, using both theory and data gleaned from our implementation. In

Theorem 3 we determine the maximum size of the integer coefficients of our reduced

polynomials and consequently compare key sizes with NTRU in Section 5. In Section 6

we address several questions relating to decryption failure in NTRU and ETRU, and

in particular establish that the size of the modulus q in ETRU may be chosen to be

significantly smaller than the NTRU modulus at comparable parameter sets and yet

offer a lower probability of decryption failure.

We then turn to the two major themes in the security of NTRU. In Section 7

we compare the size of the key spaces of NTRU and ETRU, and then describe the

modification of a meet-in-the-middle attack to ETRU and the resulting combinato-

rial security. We find that although ETRU has lower combinatorial security than does
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NTRU at comparable parameter sets, this security remains in excess of the key security

claimed by NTRU, as published in standardized NTRU parameter sets, and thus re-

mains secure. In Section 8 we analyze lattice attacks against NTRU and ETRU. These

are the most significant attacks to date and we establish that at comparable parameter

sets ETRU shows greater resistance to lattice attacks.

We summarize and present our conclusions (including that ETRU is faster, smaller,

and yet as secure as NTRU) in Section 9, where we also discuss avenues for future work.

Acknowledgments. The authors would like to thank the anonymous referees for several

helpful comments, including pointers to recent literature on the use of the FFT in

NTRU-like rings. The second author would also like to acknowledge the warm hospi-

tality of the Institut de Mathématiques et de Modélisation de Montpellier, Université

Montpellier II, France, where this work was completed.

2 The NTRU Cryptosystem

The NTRU public key cryptosystem as described in [8] depends on three integer pa-

rameters N , p and q, such that N > 1, p and q are relatively prime and q is much

larger than p. Commonly p is chosen to be 3, N is chosen to be prime (to reduce the

number of factors of XN − 1) and q is power of 2. Let

R = Z[X]/〈XN − 1〉

be the ring of convolution polynomials of degree N − 1. We denote multiplication in

the ring R by ∗. When convenient, we freely identify the polynomial f = f0 + f1X +

· · ·+ fN−1X
N−1 with the vector f = (f0, f1, . . . , fN−1) ∈ ZN .

Given a positive integer n, a polynomial f ∈ R is reduced modulo n if the

coefficients of f all lie in the interval (−n2 ,
n
2 ]. LetRn ⊂ R denote the set of polynomials

which are reduced modulo n. Given r ∈ R, recall that the notation

s ≡ r mod n

means that s is congruent to r modulo n. On the other hand, when we write

s = r mod n

we mean to assign to s the unique element of Rn which is congruent to r modulo n.

Next, one chooses Lf , Lg and Lφ to be certain subsets ofR. In general these sets are

defined so that elements of Lg and Lφ have a specified number of nonzero coefficients

of small norm, equally distributed among all choices (ensuring that these polynomials

are divisible by X − 1), while Lf has one additional nonzero coefficient (usually a 1).

Although in practice, one chooses different numbers of nonzero coefficients for these

sets to take advantage of potential efficiencies in implementation, for simplicity we

henceforth assume that there exists 0 < r < 1 such that the number of nonzero

coefficients in elements of Lg and Lφ are both rN , and the number of nonzero entries

of elements of Lf is rN + 1. The ratio we take for published parameter sets is the

largest of the three, corresponding to elements of Lf .

The quadruple (N, q, p, r) defines the basic public NTRU parameters. Given these

parameters, an NTRU private key is an element f ∈ Lf which is invertible modulo

p and modulo q. Denote by Fp, Fq ∈ R representatives of these respective inverses.
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Choose g ∈ Lg. The corresponding NTRU public key is h = Fq ∗ g mod q, which

satisfies f ∗ h ≡ g mod q.

To encrypt a binary message M , first map it to a polynomial m ∈ Rp. Then choose

a random polynomial φ ∈ Lφ. Our encrypted message is then

e = pφ ∗ h+m mod q.

To decrypt an encrypted message e ∈ R we set

a = f ∗ e mod q,

which is equivalent modulo q to a′ = pφ∗g+f ∗m. Therefore whenever the coefficients

of a′ are small enough that a′ is already reduced modulo q, we have a′ = a. Since

modulo p we have Fp ∗ (pφ ∗ g+ f ∗m) ≡ Fp ∗ f ∗m ≡ m, we then recover the original

message as

m = Fp ∗ a mod p.

If the polynomial a′ is not reduced modulo q, however, then we have decryption failure;

we discuss this further in Section 6. The parameters of NTRU are chosen to minimize

or eliminate the probability of decryption failure by ensuring that the coefficients of a′

are sufficiently small.

If (f ′, g′) is a pair satisfying f ′ ∗ h ≡ g′ mod q and for which the expression

pφ ∗ g′ + f ′ ∗m is reduced modulo q (in particular, for which the coefficients of f ′ and

g′ are sufficiently small relative to q and N) then f ′ is an alternate decryption key. For

example, any cyclic shift of f is an alternate key.

There are many variations and optimizations on the basic version of NTRU we have

summarized here, aimed at improving efficiency and security. These include: replacing

the prime p = 3 with the polynomial p = X + 2, which allows one to work with binary

rather than trinary data; choosing the private key of the form 1 + pf , for f ∈ Lf , to

eliminate one convolution in the decryption process; introducing redundancy and self-

referential padding to the message m, to thwart common attacks and reveal decryption

failure; and choosing the polynomial φ to depend on m through the use of a hash

function [13]. In this paper we focus on the basic parameters, referring to the optimized

parameters in context or in Section 9.

From this point onwards, we use primed symbols to denote the NTRU parameter

set in order to distinguish it from the quadruple of an ETRU parameter set, that is, an

NTRU parameter set is a quadruple (N ′, q′, p′, r′). We give examples of current NTRU

parameter sets in Table 1.

3 The Eisenstein Integers and ETRU

Let ω be a complex cube root of unity, that is ω3 = 1, where ω = 1
2

(
−1 + i

√
3
)
. The

ring of Eisenstein integers, denoted Z[ω], is the set of complex numbers of the form

a + bω with a, b ∈ Z. For q = a + bω we have |q|2 = a2 + b2 − ab. Write µn for the

cyclic subgroup of nth roots of unity in C; then note that µ3 = {1, ω, ω2 = −1 − ω}
and µ6 = {±1,±ω,±ω2} are both contained in Z[ω].

We have two choices of embeddings of Z[ω] into R2. The first is via the isomorphism

of additive groups Z[ω] → Z2 mapping a + bω to (a, b); under this embedding, right

multiplication by α = a+ bω is realized by the matrix

〈α〉 =

[
a b

−b a− b

]
. (3.1)
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Security level Standard N ′ q′ df r′

“moderate” NTRU167 167 128 61 0.72

“highest” NTRU503 503 256 216 0.86

128 APR2011 439 439 2048 146 0.67

256 APR2011 743 743 2048 248 0.67

256 EES1087EP2 1087 2048 120 0.22

Table 1 Some NTRU parameters sets with their specified security levels. In each case p′ = 3.
NTRU167 and NTRU503 are original parameter sets from [8] and [28]; the rest are current
parameter sets publicly distributed through [16]. We give r′ = (2df − 1)/N ′, the proportion
of nonzero coefficients in f .

This is distinct from, and computationally more efficient to use than, the isometric

ring monomorphism of Z[ω] into C (identified with R2) given by a+ bω 7→ (a− b/2) +

i(
√

3b/2). What we exploit in the sequel, and which (among rings of algebraic integers)

is unique to those of non-real quadratic extensions of Q, is that the image of this

isometric embedding is also a lattice in R2 — in fact the 2-dimensional sphere-packing

lattice. This feature allows implies a greater density of elements of Z[ω] and also allows

us to control the growth of remainders upon division by q in Section 6.

3.1 Eisenstein primes

To extend NTRU to Z[ω], a first step is to choose elements p, q ∈ Z[ω] which are

relatively prime. In practice, for reasons of efficiency of the inversion algorithms modulo

p and q, one prefers to choose them to be prime, or else prime powers. The following

is well-known; for a proof see for example [17].

Theorem 1 The set µ6 consists of exactly all units (invertible elements) of Z[ω]. The

primes of Z[ω] are (up to multiplication by a unit): 1 − ω; rational primes p ∈ Z
satisfying p ≡ 2 mod 3; and those q ∈ Z[ω] for which |q|2 = p is a rational prime

satisfying p ≡ 1 mod 3.

Thus the smallest Eisenstein primes (up to multiplication by a unit) are: p = 1−ω,

which has |p|2 = 3; p = 2, with |p|2 = 4; and p = 2 + 3ω, with |p|2 = 7.

3.2 The number of residue classes and reduction mod q ∈ Z[ω]

Over Z, the number R of residue classes mod q is simply q. Over Z[ω], letting 〈q〉 =

{rq | r ∈ Z[ω]} denote the ideal in Z[ω] generated by q, the number of residue classes

R is the cardinality of the quotient ring Z[ω]/〈q〉.

Theorem 2 Let q ∈ Z[ω] be nonzero. Then the cardinality R of Z[ω]/〈q〉 is |q|2.

Proof Write q = a+ bω. If g = gcd(a, b) then x = qq/g ∈ Z ∩ 〈q〉; in fact x is the least

positive integer in 〈q〉. We show that the elements of the parallelogram

Pq = {c+ dω | c, d ∈ Z, 0 ≤ c < x, 0 ≤ d < g} (3.2)
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are in bijection with Z[ω]/〈q〉, by showing that for any α = m+nω ∈ Z[ω], there exists

a unique ρ ∈ 〈q〉 such that α− ρ ∈ Pq.
Choose s, t ∈ Z so that sb+ ta = g. With α = m+ nω as above, let k ∈ Z be such

that d = n− kg ∈ [0, g). Then one verifies that α− q(ks− ktω2) = m′ + dω for some

integer m′. Next, find ` ∈ Z such that c = m′ − `x ∈ [0, x); as noted above `x ∈ 〈q〉.
Thus with ρ = q(ks − ktω2) + `x ∈ 〈q〉, we have α − ρ ∈ Pq. Uniqueness follows from

properties of the gcd.

Remark 1 It follows that if q is prime then Z[ω]/〈q〉 is a finite field with |q|2 elements.

In light of Theorem 1, these fields are of the form Z/pZ with p a rational prime which

is not congruent to 2 modulo 3, and a quadratic extension field of Z/pZ otherwise.

For example, Z[ω]/〈2〉 is a field with four elements, represented by the set P2 =

{0, 1, ω, 1 + ω}.
Although Pq as defined in (3.2) is a complete set of residues modulo q, for use

with NTRU one prefers a set of residues which is clustered around 0, to decrease

the probability of decryption failure. Furthermore, like for Pq, there must exist an

efficient algorithm to compute the residue of any element. A logical choice satisfying

both requirements arises from isometrically embedding Z[ω] and 〈q〉 as lattices in C,

as follows.

First note that Z[ω] is a regular hexagonal lattice in C ∼= R2 with basis B = {1, ω}
over Z. It contains a rectangular sublattice L, spanned by {1,

√
3i} over Z, of index 2,

with unique nontrivial coset ω + L. See Figure 1.

R

Ri

ω

1

Fig. 1 The dots represent elements of Z[ω] in the complex plane. The rectangular sublattice
L of Z[ω] is represented by solid dots, and its nontrivial coset, ω + L, is represented by open
dots.

Given q ∈ Z[ω], the ideal 〈q〉 is again a lattice, with basis qB = {q, qω}. In analogy

with the definition of reduced elements in the lattice Z, we define the set Dq of reduced

elements modulo q to be those elements of Z[ω] contained in the Voronoi cell Vq of the

origin of 〈q〉 (with some exclusion on boundary elements, specified below). Thus the

closure of Vq is the region bounded by a certain regular hexagon inscribed between

circles of radius 1
2 |q| and 1√

3
|q|; see Figure 2.

As shown in [25], determining the reduced element β ∈ Dq corresponding to α ∈
Z[ω] is equivalent to finding β and r in Z[ω] such that β is reduced modulo q and

α = rq + β. (3.3)

This is equivalent to finding the closest vector rq ∈ 〈q〉 to α, or rather, finding the

closest r ∈ Z[ω] to q−1α ∈ C (and deducing β from (3.3)). This last restatement is the

closest vector problem (CVP) in the lattice Z[ω], which is solved as follows.
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First find the closest vectors to the complex number q−1α on each of the rectan-

gular lattice L spanned by {1, i
√

3}, and on its coset ω + L, by rounding each of the

coordinates of q−1α (respectively, of q−1α − ω) to the nearest integer multiples of 1

and i
√

3. More precisely, for α = m+ nω and q = a+ bω, we compute

α

q
=

αq

|q|2
=
s+ t

√
3i

2|q|2

where s, t ∈ Z are given by s = m(2a− b) +n(2b−a) and t = na−mb. Writing dyc for

the nearest integer to y (rounding down on half-integers), we deduce that the nearest

element on the lattice L to q−1α is

r1 =

⌈
s

2|q|2

⌋
+

⌈
t

2|q|2

⌋√
3i =: x0 + x1

√
3i.

In Eisenstein coordinates, this is r1 = (x0 + x1) + 2x1ω. The calculation for q−1α− ω
is similar, yielding r2 ∈ Z[ω].

Secondly, choose r to be the closer of the two lattice points thus obtained. When

q−1α is equidistant from two or more lattice points, a choice is made. In contrast with

the algorithm presented in [25], where the choice was arbitrary, we here choose the

one geometrically further to the left, which is consistent with our function dc and thus

guarantees correct decoding in the boundary case as well.

See Algorithm 1 for the full details. The set Vq thus obtained is illustrated for

q = 2 + 3ω in Figure 2. Note that the set of reduced elements we obtain mod p = 2 is

the set D2 = {0, 1, ω, ω2} = {0} ∪ µ3, which is more symmetric about 0 than is P2.

Algorithm 1 Solution to CVP for Z[ω]

Input: α = m+ nω and q = a+ bω
Output: (r, β) such that α = rq + β and β is reduced modulo q.
Use functions: |c+dω|2 = c2+d2−cd and

⌈
c
d

⌋
= (c−c)/d where c = c mod d ∈ (−d/2, d/2].

ε1 := 2a− b, ε2 := 2b− a
Q := |q|2, d := 2Q

Compute the closest vector on the sublattice L:
s := mε1 + nε2, t := na−mb
x0 := ds/dc, x1 := dt/dc
r1 := (x0 + x1) + 2x1ω
β1 := α− q ∗ r1 ∈ Z[ω]

Compute the closest vector on the coset ω + L:
s′ := s+Q, t′ := t−Q
y0 := ds′/dc, y1 := dt′/dc
r2 := (y0 + y1) + (2y1 + 1)ω
β2 := α− q ∗ r2 ∈ Z[ω]

Choose the closest:
if |β1|2 < |β2|2 return (r1, β1)

elsif |β1|2 > |β2|2 return (r2, β2)
elsif x0 < y0 return (r1, β1)

else return (r2, β2)
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R

iR
q

Fig. 2 The open circles represent the elements of the ideal 〈q〉 with q = 2 + 3ω. The hexagon
defines Vq and all elements of Z[ω] contained in it (or on the solid line boundary, in gen-

eral) are elements of Dq . The inscribed and circumscribed circles have radii |q|/2 and |q|/
√

3,
respectively.

3.3 Complexity of reduction modulo q in Z[ω]

We analyze the complexity of Algorithm 1 by estimating its cost in terms of integer

multiplications or squarings (M) and additions, doublings or subtractions (A).

We begin with the built-in integer modulus operation. We generated 100 million

pairs of random 4-byte signed integers and compared the cost of multiplying them

(0.228 seconds) to taking the first mod the second (0.231 seconds); we conclude that

for our purposes we may treat these operations as equally costly. The nearest integer

function is based on two calls to the mod operation, so incurs cost 2M .

The norm function incurs a cost of 3M+2A. The product of two Eisenstein integers

a+ bω and c+ dω is given by

(a+ bω)(c+ dω) = ac− bd+ (ad+ bc− bd)ω = ac− bd+ (ac+ (a− b)(d− c))ω

so has cost 3M + 4A. The sum of two Eisenstein integers has cost 2A.

We now turn to Algorithm 1. The first phase has cost 3M + 7A; the second 11M +

10A; the third 7M + 11A and the final comparison 6M + 4A. The total cost, of 27M +

32A, is significantly higher than that of a simple integer modulus, but by a constant

factor.

3.4 Defining ETRU

To define ETRU, we choose an integerN (preferably prime) and setRE = Z[ω][X]/〈XN−
1〉; we also choose p and q in Z[ω] relatively prime, with |q| much larger than |p|. For

any α ∈ Z[ω], let REα denote the set of reduced elements of RE modulo α. Note that

an element f ∈ RE is a polynomial f0 +f1X+ · · ·+fN−1X
N−1 where each coefficient
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is an Eisenstein integer fi = ai + biω. Then f ∈ REα if and only if each fi ∈ Dα. We

identify f with the vector

(a0, b0, a1, b1, · · · , aN−1, bN−1) ∈ Z2N . (3.4)

We choose p = 2 throughout, which has several advantages. Reduction modulo 2

is straightforward, and does not require Algorithm 1: given a + bω, reduce each of a

and b to elements of {0, 1} modulo 2, replacing 1 + ω with −1 − ω if it occurs. The

encoding of binary messages as elements of REp is also simple: identify the ith pair of

bits ab with the coefficient a + bω of Xi−1, with the exception that 11 is encoded as

−1 − ω. (In contrast, the choice p = 2 + 3ω was treated in [17]; there remainders are

computed via a CVP algorithm and, as Dp = {0} ∪ µ6, encoding messages requires

some additional data treatment.)

Let 0 < r < 1 be fixed and let Lf , Lg and Lφ be subsets of RE with approximately

rN nonzero coefficients which are chosen from µ6. We choose the sets as follows.

The polynomials in Lg and Lφ should be divisible by X−1 modulo q (see Sections 6

and 8, respectively); therefore let s be the nearest multiple of 3 to rN and randomly

choose s/3 triples of coefficients, each one to be either {1, ω, ω2} or {−1,−ω,−ω2} in

some order. Each such polynomial ψ satisfies ψ(1) = 0.

Let t be the nearest integer to rN ; we let Lf consist of all polynomials with t

nonzero entries, such that each nonzero entry lies in µ6. The private key f will be an

invertible element of Lf ; we note that as with NTRU, a randomly chosen element of

Lf will be invertible with very high probability [30].

The encryption and decryption algorithms are the same as in Section 2.

3.5 On comparing ETRU with NTRU

Since each ETRU coefficient is a pair of integers, an instance of ETRU at degree N is

comparable with an instance of NTRU of degree N ′ = 2N . This correspondence is apt:

each Eisenstein integer coefficient of the polynomials f , g and φ in ETRU is stored as a

pair (a, b) of integers representing a+bω, and for coefficients in µ6, a and b takes values

in {−1, 0, 1}, just as do all N ′ coefficients of the polynomials for trinary NTRU. Only

7 pairs of trinary integers are used in the representation of {0} ∪ µ6 ⊂ Z[ω], whereas

all 9 pairs occur in pairs of integers mod 3.

Throughout we therefore compare ETRU with NTRU assuming that N ′ ∼ 2N . In

practice N ′ is odd, but where this is irrelevant we may simply set N ′ = 2N to simplify

the discussion.

We also assume r′ = r, that is, the polynomials have the approximately the same

ratio of nonzero coefficients. Note that to take advantage of the efficiency of multiplying

by sparse polynomials, it is desirable for r to be small; but to increase combinatorial

security in the face of brute force and meet-in-the-middle attacks (see Section 7), one

prefers r to be large. For most tests, we assume r = 2/3, which is consistent with

several parameter choices from Table 1.

In the following sections, we compare ETRU, for parameters (N, q, p = 2, r) with

NTRU, for parameters (N ′ ∼ 2N, q′, p′ = 3, r′ = r). We derive the optimal ratio of q

to q′ in Section 6.
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4 Encryption and Decryption Speed

Each encryption requires the user to compute e = φ ∗ h̃ + m mod q (where h̃ = ph

mod q can be precomputed and stored as the public key) and each decryption requires

the user to compute both a = f ∗e mod q and m = Fp ∗a mod p. Let us discount the

costs of integer addition and compare the complexity of encryption and decryption in

ETRU and NTRU just as a function integer multiplications.

Computing a sum of polynomials has equal cost for ETRU and NTRU when N ′ =

2N . The convolution of two polynomials of degree n − 1 requires nominally n2 ring

products. Therefore this cost is 3N2 in RE whereas for NTRU one needs N ′2 ∼ 4N2

integer multiplications. It follows that the convolution of Eisenstein polynomials is

faster than for integer polynomials of twice the degree.

From Section 3.3 we know the cost of reducing a coefficient mod q is 27 times more

costly for Z[ω] than for Z. Therefore in RE the total cost of reducing a polynomial mod

q is 27N whereas for NTRU it is N ′ ∼ 2N . Since reducing an Eisenstein polynomial

mod p = 2 in the decryption step is achieved at the cost of reducing each coefficient

modulo 2, it costs only 2N .

Therefore in total one countsN ′2+N ′ ∼ 4N2+2N operations for NTRU encryption

at N ′ ∼ 2N in contrast to only 3N2 + 27N operations for ETRU encryption. For

decryption, we have 2N ′2+2N ′ ∼ 8N2+4N operations for NTRU and only 6N2+29N

operations for ETRU. This complexity is essentially independent of the size of q.

To verify the greater speed of ETRU, we first compare the costs of polynomial

convolution modulo q of 10, 000 pairs of polynomials from comparable parameter sets

in Table 2, for each of NTRU and ETRU. We see that ETRU is significantly faster

than NTRU for large N . In fact we see that in implementation the actual cost of the

NTRU (ms) ETRU (ms) ratio

N = N ′/2 f ∗ g mod q′ f ∗ g mod q NTRU/ETRU

50 867 708 1.22

100 3312 2419 1.37

150 7174 5075 1.41

200 12773 9056 1.41

250 20040 13721 1.46

Model 4N2 + 2N 3N2 + 27N ∼ 1.33

Table 2 Comparison of time, in ms, to compute the convolution product of 10,000 pairs of
polynomials modulo q, in each of ETRU (N, q = 239, p = 2, r = 2/3) and NTRU (N ′ =
2N, q′ = 239, p′ = 3, r = 2/3). The rightmost column is the ratio of their speeds and the last
row is the estimated number of integer multiplications per convolution.

Eisenstein integer convolution modulo q is smaller than estimated by the model, since

the ratio of the two columns exceeds the expected value of 4/3 for larger values of N .

We next compare the speed of encrypting and decrypting 10,000 messages in ETRU

and NTRU for comparable parameter sets, in Figure 3. This data includes the overhead

costs of generating messages and the variable φ for encryption. We see that the data
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in each case fits a quadratic curve, and that for each of encryption and decryption, for

N ′ = 2N , ETRU is distinctly faster.

Fig. 3 Encryption/Decryption speed of ETRU vs NTRU. Comparison of time, in ms, to
encrypt and decrypt 10,000 random messages in each of ETRU (N, q = 239, p = 2, r = 2/3)
and NTRU (N ′ = 2N, q′ = 239, p′ = 3, r = 2/3). The curves are the best-fitting quadratic
polynomials to the data.

4.1 Further optimizations

We note that since q is chosen to be prime, one has the possibility of using a number-

theoretic transform (that is, FFT) to compute the convolution product. This approach

has been adopted in several recent lattice-based cryptographic protocols, including [20].

Namely, if N and q are chosen so that N divides |q|2 − 1, then the field Z[ω]/〈q〉
contains the group of N th roots of unity; let α be a generator. Then the transform

F given on f =
∑N−1
i=0 fiX

i ∈ REq by F(f)j =
∑N−1
i=0 fiα

ij has the property that

f ∗e = F−1(F(f) ·F(e)), where · indicates the simple pointwise product. For example,

with N = 83 one could choose the prime q = 51 + 19ω, since |q|2 = 1993 and 83 divies

1992. One primitive 83rd root of unity in Z[ω]/〈q〉 is α = −11− 16ω.

In general, using a number-theoretic FFT algorithm to compute F reduces the

complexity of the convolution product from O(N2) to O(N log2(N)). For sufficiently

large N , one would expect this to be more efficient despite the added overhead costs

(such as storing the powers of α).

Choosing q so that N divides |q|2 − 1 limits our freedom to choose ETRU param-

eters which are directly comparable with NTRU, however, and we do not exploit this

optimization here.

5 Key Size

As per Theorem 2, there are |q|2 choices for each coefficient of h ∈ REq . In practice,

each coefficient is stored as a pair of integers (a, b) representing a + bω ∈ Z[ω]. Our
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goal in this section is to determine the range of these variables as a+ bω runs over Dq,

which determines the size of the ETRU public key.

Theorem 3 Let q ∈ Z[ω] and let Dq be the set of reduced elements modulo q. Write

Bs = [−s, s]× [−s, s] ⊂ R2. Then the Eisenstein coordinates of the elements in Dq all

lie in the bounding box B2|q|/3, that is,

{(c, d) | c+ dω ∈ Dq} ⊂ Bs

with s = 2|q|/3. There exist choices of q for which this s is optimal; and there exist

choices of q for which the inclusion is instead satisfied with s = |q|/
√

3, which is the

minimum possible.

Proof It suffices to verify the assertion for the vertices of the Voronoi cell Vq ⊃ Dq.

We begin by determining (through geometry or direct calculation) that for q = 1 the

vertices of V1 are ± 1
3 (1 + 2ω), ± 1

3 (1− ω) and ± 1
3 (2 + ω). Let q = a+ bω; multiplying

the vertices of V1 by q yields the vertices of Vq. Writing each vertex in the form c+ dω

yields c, d ∈ S where

S = {±1

3
(2a− b),±1

3
(a+ b),±1

3
(2b− a)}.

We see directly, using |q|2 = a2 + b2 − ab, that each of these terms is at most 2|q|/3 in

absolute value, and equality of an element of S to this bound is achieved when either

a = 0, or b = 0 or a = b, proving the first two assertions.

Next, we note that if the square of each element in S were at most |q|2/3, then we’d

have simultaneously (a+ b)(2a− b) ≥ 0, (a+ b)(a− 2b) ≤ 0 and (a− 2b)(2a− b) ≥ 0.

This can hold only if one factor (and hence one element of S) is zero, whereupon the

other two elements of S are equal in absolute value to |q|/
√

3, proving the remaining

assertions.

Remark 2 Geometrically, the theorem is a statement of the fit of Dq within a parallel-

ogram with sides parallel to 1 and ω. The vectors q allowing the best fit (that is, the

minimum value of s) are the vectors in the same direction as a vertex of the hexagon

V1, but these are not prime except when |q| =
√

3.

The public key h is a polynomial with N coefficients which are reduced modulo q.

Each coefficient consists of two integers which by the theorem can be stored as binary

strings of length dlog2(4|q|/3)e, whence the size of the ETRU public key is

KE = 2Ndlog2(4|q|/3)e.

An NTRU public key, corresponding to polynomials with N ′ = 2N coefficients reduced

modulo an integer q′, has size KN = N ′dlog2(q′)e. Therefore to maintain the same

key size as NTRU with N ′ = 2N and q′ = 2k, we should choose |q| ≤ 3
4q
′ so that

dlog2(4|q|/3)e ≤ dlog2(q′)e. In Sections 6 and 8 we show that in fact |q| ∼ 3
8q
′ is an

optimal choice in view of security against decryption failure and lattice attacks. With

this choice we have

KE = 2Ndlog2(4|q|/3)e ∼ N ′dlog2(q′/2)e ∼ KN −N ′.

Therefore, the public key for ETRU will be smaller than that of the NTRU public key.

These values are computed for comparable parameters in Section 9.
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We note that in contrast the coefficients of the private key f and its inverse Fp
modulo p are confined to a limited range ( {0}∪µ6 and {0}∪µ3, for ETRU, and binary

or trinary for NTRU, depending on the choice of p) and so may be stored in less space

if required, between 4N and 8N bits.

6 Probability of ETRU Decryption Failure

Recall that a decryption failure occurs if in the encryption of a message m, the poly-

nomial a′ = pφ ∗ g + f ∗m is not in REq .

6.1 Detectability of decryption failure

Since encryption is probabilistic, the recipient cannot verify that their received message

m′ is equal to the sent message m by re-encrypting m′. Instead, note that since X − 1

divides g (and XN − 1), it divides h. Thus the gcd of ph with Xn − 1 is divisible

by X − 1, and will be equal to X − 1 with high probability. In this case, there exist

polynomials H and s such that

H ∗ ph+ s ∗ X
N − 1

X − 1
= 1.

Such an H is a called a pseudo-inverse [6] of ph, and one can see that for any polynomial

φ divisible by X−1, we have H∗(ph)∗φ ≡ φ mod q. Consequently, since e−m ≡ pφ∗h
mod q, we accept the decryption m′ of e if H ∗ (e−m′) ∈ Lφ.

6.2 Weakness induced by decryption failure

In [6], Gama and Nguyen propose the following chosen ciphertext attack. If an attacker

can generate pairs (m,m′) of messages and failed decryptions, and if the private key f

is reduced modulo p, then the attacker can recover f . This succeeds when exactly one

coefficient of a′ is false, so that a = a′+ ε where ε is a monomial; then m′−m ≡ Fp ∗ ε
mod p, whence the attacker recovers Fp (up to a cyclic shift). Whenever the private

key f is reduced mod p, f is uniquely identified as the inverse modulo p of Fp.

We note that ETRU is resistant to this, and similar, chosen ciphertext attacks, since

the coefficients of f are chosen from among all six units in Z[ω], not just those three

which are reduced modulo 2. In this case, the recovery of f modulo 2 by a successful

attack must be followed by a search through the 2rN possible values of f with this

reduction. We see from Table 6 that this is sufficiently large.

Optimized NTRU is resistant to this kind of attack. For example, choosing f to be

of the form 1 +p′F or f1 + f2 ∗ f3, for small polynomials F or f1, f2 and f3, eliminates

or reduces the leakage of information from Fp′ , although at the expense of increasing

the size of the coefficients and thus increasing the risk of decryption failure. Another

tendency is to choose q′ sufficiently large so as to eliminate the possibility of decryption

failure (see Section 6.5); the tradeoff is a decreased resistance to lattice attack [6].
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6.3 Characterizing the probability of decryption failure

Let us model the probability of decryption failure in ETRU with a view towards de-

creasing or eliminating its occurrence. For NTRU this has been done variously in [5,

18], among others.

We make some simplifying assumptions to model the distribution of the coefficients

of the polynomial a′. Assume that rN is evenly divisible by 6 and that the nonzero

coefficients of f , g and φ are evenly distributed over µ6 whereas the coefficients of m

are evenly distributed over µ3 ∪ {0}. Write hi for the coefficient of Xi in a polynomial

h ∈ RE .

The coefficients of a′ are given by

a′i = p
∑
j+k≡i

φjgk +
∑
j+k≡i

fjmk

for each 0 ≤ i < N , where the congruences in the summations are modulo N . If N is

large, we may by the central limit theorem model the real and imaginary parts of this

sum as a bivariate normal distribution (Y,Z).

Given a pair (j, k), the term φjgk takes on each value in µ6 with equal probability

r2/6, while fjmk takes on each value in µ6 with equal probability r/8. It follows that

the mean of the real and imaginary parts of the sum are each zero, and that these

parts have correlation coefficient zero. To compute their variance, we note first that

V ar(Re(φjgk)) = E((Re(φjgk))2)− E(Re(φjgk))2 =
1

4
(4)

r2

6
+ (1)(2)

r2

6
=

1

2
r2

which is the same value as V ar(Im(φjgk)). Similarly,

V ar(Re(fjmk)) = V ar(Im(fjmk)) =
3

8
r.

This yields total variance of the real and imaginary parts of

σ2Y = σ2Z = p2N
1

2
r2 +N

3

8
r = rN(2r +

3

8
). (6.1)

Then the probability distribution function for (Y,Z) for each coefficient y+ zi is given

by

ϕ(y, z) =
1

2πσY σZ
exp

(
−(y2 + z2)

2σY σZ

)
.

We deduce that the probability that all N coefficients of a′ are reduced modulo q (that

is, of decryption success) is modelled by

PE (N, q, r) =

(∫ ∫
Vq

ϕ(y, z)dydz

)N
.

Given the symmetry of the function ϕ about the origin, we may replace Vq with the

rotated region V|q|, on which the integral is simpler to compute. Using numerical inte-

gration, we plot this probability function, for fixed N = 53 and r = 2/3, and varying

values of |q|, in Figure 4.

To confirm the validity of the model and the irrelevance of our simplifying assump-

tions, we chose a range of Eisenstein primes q and generated private and public keys for
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Fig. 4 The probability of decryption success in ETRU as a function of |q|, for N = 53 and r =
2/3. The solid curve represents the function PE(N, q, r). The crosses represent experimental
data. For each q we encrypted 10,000 messages. Plotted is the ratio of these messages which
were correctly decrypted.

N = 53, r = 2/3 and p = 2. We chose g and φ to satisfy g(1) = φ(1) = 0 by assigning

their 36 nonzero entries equally from the six choices in µ6, but chose the 35 nonzero

coefficients of f randomly from µ6. Then we generated 10,000 random messages and

encrypted them with ETRU. The percentage of successful decryptions at each |q| are

plotted as crosses on Figure 4. We conclude that the data confirms the validity of our

model.

6.4 Comparing decryption failure in ETRU and NTRU

Our next step is to compare the probability of successful decryption of NTRU and

ETRU as functions of |q|. In [18], Kouzmenko applied this analysis to NTRU with

trinary coefficients, where the coefficients of a′ are modelled as real Gaussian random

variables with mean zero and variance σ′2 = rN ′(9r + 2
3 ). (His analysis included the

possibility of different ratios of nonzero coefficients for each of the sets Lf ,Lg and Lφ,

in substantially the same way as presented here.) Thus the probability of successful

decryption in NTRU is determined by way of the Gaussian cumulative distribution

function Φ as

PN (N ′, q′, r) =

(
2Φ

(
q′

2σ′

)
− 1

)N ′

.

To determine the value of |q| for which the probability of decryption failure of ETRU is

less than or equal to that of NTRU, for N ′ = 2N and same r, let us underestimate the

probability of successful decryption of each Eisenstein integer coefficient as the integral
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r N q′ log2(1− P ) |q| q′/|q|

0.25 25 64 −22 26 2.5

0.25 50 64 −11 26 2.4

0.5 25 64 −7 25 2.5

0.5 50 64 −3 26 2.5

0.25 100 128 −22 52 2.5

0.25 200 128 −11 53 2.4

0.5 100 128 −7 50 2.5

0.5 200 128 −3 51 2.4

0.5 100 256 −25 97 2.6

0.5 200 256 −13 99 2.6

0.75 100 256 −12 97 2.6

0.75 200 256 −6 99 2.6

0.75 200 512 −23 190 2.7

0.75 300 512 −16 192 2.7

Table 3 Values of |q| (rounded to nearest integer) vs q′ at which the probability of decryption
failure is equal, for various combinations of parameters N , N ′ = 2N , and r. Given is the
approximate value of log2(1− P ), the probability of decryption failure for a single Eisenstein
coefficient in ETRU or of at most two integer coefficients in NTRU.

of ϕ(y, z) over the disk C of radius |q|/2 inscribed inside Vq. This integral admits a

closed-form solution

P̃E (N, q, r) =

(∫ ∫
C

ϕ(y, z)dydz

)N
=
(

1− exp
(
−|q|2/(8σ2)

))N
.

Lacking a similar expression for PN , we simply solve for |q| in the equality P̃E (N, q, r) =

PN (2N, q′, r) for various choices of N , r and q′ (limited by the precision of our calcu-

lator) to obtain the values in Table 3. We see that the ratio of q′ to |q| at which the

decryption probability is equal increases slightly as N , r and q′ increase, and is about

2.6 or 2.7 for larger N and q.

6.5 Elimination of decryption failure

We claim that for the most recent parameter sets (Table 1), q′ is chosen sufficiently

large as to eliminate the possibility of decryption failure. Namely, since our coefficients

are all units, the maximum absolute value of any coefficient of the convolution is equal

to the number of nonzero entries of one polynomial. It follows that, independent of

the distribution of the nonzero coefficients in f , g, and φ, and independent of m, no

coefficient of a′ = p′φ ∗ g + f ∗m can exceed rN ′(p′ + 1) = 4rN ′ in absolute value.

Therefore decryption is guaranteed to be successful if q′/2 > 4rN ′. This is the case

for EES1087EP2 as written. In the APR class, in reality g is chosen to have far fewer

nonzero entries and the coefficients of the resulting a′ are also less than q′/2.

On the other hand, decryption success in ETRU is guaranteed if the largest possible

(absolute) value of any coefficient, rN(p + 1) = 3rN , lies in the disk C of radius
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|q|/2. This yields the bound |q| > 6rN , lower than the comparable NTRU bound

q′ > 8rN ′ ∼ 16rN .

Hence for NTRU parameter sets which allow no decryption failure, we may choose

|q| ∼ 3
8q
′ for ETRU. This gives a ratio q′/|q| ∼ 2.67 which is consistent with our results

in Table 3. We conclude that for N ′ ∼ 2N and low or zero level of decryption failure,

choosing q so that

|q| ∼ 3q′/8 (6.2)

will provide ETRU with an equivalent level of protection against decryption failure as

NTRU.

7 Combinatorial Security of ETRU

7.1 Brute force search and key space size

Given a ciphertext e, equal to pφ∗h+m, an attacker can recover m if he determines any

of the polynomials f , g, φ or (obviously) m. One option is brute force search: finding

f ′ ∈ Lf such that modulo q we have h∗f ′ ∈ Lg, or finding φ′ ∈ Lφ such that e−pφ′ ∗h
mod q is reduced modulo p; or else, using the pseudo-inverse H of h as described in

Section 6, finding m′, reduced mod p, such that modulo q, H ∗ (e − m′) ∈ pLφ, or

finding g′ ∈ Lg such that modulo q, H ∗ g′ ∈ Lf .

The sizes of the sets to be searched are as follows. There are (minus conditions on

valid messages introduced by padding schemes or other security measures) approxi-

mately 4N valid choices for m′. By construction, Lg and Lφ have size

|Lg| = |Lφ| =
(
N

rN

) rN
3∑

k=0

(rN ; k, k, k,
rN

3
− k, rN

3
− k, rN

3
− k)

where (
∑
ni;n1, · · · , nk) is a multinomial coefficient. The set Lf consists of invertible

(mod q) polynomials with rN nonzero entries chosen from µ6. In practice one generates

an f with rN nonzero entries chosen from µ6 then verifies its invertibility (which

occurs with overwhelming probability). Hence for the purposes of a brute-force search

we estimate

|Lf | =
(
N

rN

)
6rN ,

as compared with (N ′; rN ′/2, rN ′/2−1) for NTRU. Some sample values are computed

in Table 4.

7.2 Meet in the middle attack and combinatorial security

Instead of a brute force search, the attacker may employ a meet-in-the-middle attack,

as proposed by Odlyzko and presented in [12] for p = 2, which aims to halve the

effective size of the key space. Since recovering f is the most desirable option for the

attacker, and since Gama and Nguyen proved in [6] that the existence of a decryption

oracle for NTRU (in the presence of decryption failures) implied the recovery of f , we

restrict our discussion to this case.
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The method of the meet-in-the-middle attack is to search for polynomials f1 and

f2, each with half the nonzero entries of f such that f = f1 + f2. Given a list of

candidates f1 and f2, a successful choice will satisfy that h ∗ (f1 + f2) = h ∗ f1 +h ∗ f2,

modulo q, lies in Lg, and so is in part characterized by the property that the coefficients

of h ∗ f1 and −h ∗ f2 differ, modulo q, by a coefficient of g (which is small).

Let F be the set of polynomials of degree bN/2c−1 with brN/2c nonzero coefficients

chosen from µ2 for NTRU and from µ6 for ETRU; this set is a valid choice as it includes

the first half of at least one cyclic shift of f . Define F2 in a similar manner to include

the second half of f (thus consisting of polynomials of degree N−1, divisible by xbN/2c,
and with the complementary number of nonzero entries from appropriate sets). The

proposed approach is to sort the f1 ∈ F into bins, whose label is the sequence of the

most significant (sign) bits of each of the first k coefficients of h ∗ f1 (modulo q). (For

ETRU, where each coefficient is a pair of integers, one chooses simply the first k integer

components.)

For each f2 ∈ F2, if −h∗f2 gives a sequence whose bin is occupied by some f1, then

the first k integer coefficients of h∗f1 +h∗f2 are relatively small. Set f ′ = f1 +f2 and

compute h∗f ′ mod q. If all its coefficients have norm at most 1, then f ′ is potentially

a key.

Otherwise, and before rejecting f2, one must additionally verify some adjacent bins,

to account for all bins corresponding to −h ∗ f2 + g for varying choices of g.

For NTRU with p = 3, one must account for cases in which the most significant

bit of −h ∗ f2 changes upon adding ±1; this happens with probability P = 4/q′.

For ETRU one must account for cases in which the most significant bit of one of the

integer coefficients of −h ∗ f2 changes upon adding an element of µ6. This occurs for

approximately 2/3 of the elements lying near the boundary of the domain Dq, as well

as for those elements with that coefficient equal to 0 or −1. We estimate the number

of these elements as the ratio of the area of the corresponding regions in Vq to the

determinant d =
√

3/2 of the lattice Z[ω]. The area of a hexagon with inner radius r

is 2
√

3r2; hence the area of the boundary strip of width 1 in Vq (where r = |q|/2) is

2
√

3(|q| − 1). The area of a diagonal strip of width 2 in Vq is at least 2|q|. Thus the

number of elements is 2√
3

(
2
3 · 2
√

3(|q| − 1) + 2|q|
)
∼ 5|q|. Since there are |q|2 elements

in total, the probability that a single integer coefficient is affected is approximately

P = 5/|q|. If |q| ∼ 3
8q
′ then this probability is 10/3 times that for NTRU.

The probable number of bins to be checked for each f2 is 2kP . We see that the

number of additional bins that may need to be checked is significantly higher for ETRU

than for NTRU, slightly increasing the complexity of the attack on ETRU versus on

NTRU.

As per [12], to carry out the attack effectively one should choose k so that 2k >>

|F|; thus most bins are empty, decreasing the number of unsuccessful checks of (f1 +

f2) ∗ h. Then 2kP is effectively a small constant and the complexity of this attack is

simply proportional to |F| ∼ |F2|, corresponding to generating the candidates for f1
and f2 and computing the necessary convolutions.

For NTRU we have (omitting the floor function for brevity) |F| = 2rN
′/2

(
N ′/2
rN ′/2

)
whereas for ETRU we have |F| = 6rN/2

(
N/2

rN/2

)
. Comparing these with |Lf | in each

case, we see that as expected, the meet-in-the-middle attack effectively halves the log-

size of the keyspace.
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Parameter set NTRU167 APR2011 439 EES1087EP2

NTRU N ′ 167 439 1171

ETRU N 83 223 541

Security level (bits) - 128 256

|Lf | NTRU 255 686 > 1000

|F| NTRU 127 343 529

|Lf | ETRU 222 568 719

|Lg | ETRU 210 562 705

|F| ETRU 109 286 357

Table 4 Approximate log2 of key space size and level of combinatorial security in light of
meet-in-the-middle attacks (the log size of |F|) of NTRU vs ETRU at N ′ ∼ 2N in specified
parameter sets, compared with specified security level.

We compare the sizes of the key spaces, and the combinatorial security of NTRU

and ETRU in light of the meet-in-the-middle attack, with the prescribed security level

of some parameter sets in Table 4. Where necessary, we used Stirling’s approximation

and the bounds

1

4rN

(
(1− r)r−1

rr

)N
≤
(
N

rN

)
≤
(

(1− r)r−1

rr

)N
, (7.1)

valid for 1
2 ≤ r < 1, from [32], to estimate the values of binomial coefficients. We note

that in each case where a security level is specified, the combinatorial security of NTRU

far exceeds its target security parameter. In particular, we note that although ETRU

has smaller key spaces and lower combinatorial security than NTRU for comparable

parameter sets (due largely to the smaller value ofN), ETRU maintains a combinatorial

security well in excess of the prescribed value. Thus we conclude that ETRU is secure

against brute force and meet-in-the-middle attacks at these levels.

8 Lattice Security of ETRU

The most critical measure of the security of NTRU is its resistance to lattice attacks, as

pioneered in [5], and further analyzed in [10]. The lattices to be attacked in NTRU (8.2)

and ETRU (8.5) are generalizations of so-called ideal lattices, whose use in cryptography

is growing in prominence. In the case of ETRU, the set

{(f, g) ∈ RE ×RE | f ∗ h ≡ g mod q} (8.1)

is an RE -module (i.e. a generalization of an ideal) and a 4N -dimensional integral

lattice. The vector corresponding to the private key pair (f, g) is a short vector in this

lattice, and one could therefore discover the private key (or perhaps an alternate) if

one could find a sufficiently short vector in the lattice. The shortest vector problem on

random lattices, under suitable assumptions, is NP-hard [23] but it is an open problem

if this is true of the subclass of ideal lattices. It is also unknown if the SVP, in general

or on this subclass, admits a quantum polynomial-time solution.
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Lattice attacks use lattice basis reduction techniques, such as LLL [19], BKZ [27]

or BKZ 2.0 [3], to identify a short vector. For a fixed parameter δ ∈ (0.25, 1), LLL

runs in polynomial time, but may fail to produce a basis containing sufficiently small

vectors. It may however be run with increasingly large δ until a vector of a given target

norm is found, at the cost of exponential running time in n [24]. BKZ has an additional

parameter, corresponding to block size, and is more efficient in practice. Several further

improvements have been made to BKZ, leading to BKZ 2.0, implemented in [3]. In

our experiments, we applied classical BKZ with a blocksize of 10 and δ = 0.99, as

implemented in the G BKZ FP algorithm from Shoup’s NTL library [29].

Throughout this section, we freely identify f with the row vector corresponding to

the polynomial f as in (3.4). Given a polynomial h of degree n− 1, let H be its n× n
circulant matrix, that is, the matrix satisfying fH = f ∗ h where f ∗ h is the usual

convolution.

8.1 The NTRU lattice

Given the public key h′ of an instance of NTRU with parameters (N ′, q′, p′ = 3, r), let

H ′ be its circulant matrix and let LN be the lattice generated by (right multiplication

by) the 2N ′ × 2N ′ matrix [
IN ′ H ′

0 q′IN ′

]
. (8.2)

Since LN consists of all vectors (f, g) in Z2N ′
satisfying f ∗h′ ≡ g mod q′, our private

key (f, g) is a short element of this lattice, having norm approximately
√

2rN ′. By

the Gaussian heuristic, the expected shortest vector of a lattice L of dimension n and

volume v has length [26]

s =

√
n

2πe
v1/n. (8.3)

For a given dimension of lattice, it has been observed that the likelihood of success of

LLL in finding a target vector of (short) length t increases as the ratio s/t increases

[11]. For LN we have n = 2N ′ and v = q′
N ′

, so sN =
√
N ′q′/(πe) whereas the norm

of the key (f, g) is tN =
√

2rN ′. Thus the relevant ratio is

cN =
√
q′/(2πer), (8.4)

which in practice has proven to be small enough to allow NTRU at current parameter

sizes to withstand lattice reduction attacks.

Alternately, for an n-dimensional lattice L [7] and [3] propose the (nth root of the)

Hermite factor γn = t/v1/n as a measure of the effort required of a lattice reduction

algorithm to succeed; this has been shown to be an effective measure on random lattices.

The Hermite factor for most NTRU parameter sets is less than 1, reflecting the non-

random nature of the NTRU lattice. Instead, [7] and [3] compute the Hermite factor

of an algorithm achieving a target vector in an NTRU lattice of norm less than q′; this

yields γ2N ′ =
√
q′.
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8.2 The ETRU lattice

We fix an isomorphism of Z[ω] with Z2 and define 〈α〉, as in (3.1).1 Note that det(〈α〉) =

|α|2. Given an n × n matrix A with entries in Z[ω], write 〈A〉 for the 2n × 2n matrix

over Z in which each entry aij is replaced with the 2× 2 block 〈aij〉. Then the lattice

LE corresponding to (8.1) in Z4N is given by (right multiplication by) the matrix[
I2N 〈H〉

0 〈qIN 〉

]
. (8.5)

Again, the private keys of ETRU correspond to short vectors of LE .

The length of the expected shortest vector of LE , as computed from (8.3), is sE =√
2N |q|/(πe). Our keys f and g each have rN nonzero entries, each of which has norm

1 as an element of C. However, viewed as vectors in this lattice, we have

±1 = (±1, 0), ±ω = (0,±1), ±ω2 = (∓1,∓1),

so that the norm of the target vector (f, g) lies between
√

2rN and
√

4rN . For the

sake of discussion, we will assume the coefficients are equally distributed, so that tE =√
8rN/3. We calculate that the ratio

cE = sE/tE =
1

2

√
3|q|/(πer). (8.6)

Similarly, one may compute the Hermite factor required for a lattice reduction algo-

rithm to produce a target vector of length at most |q|; as for NTRU, this gives a

Hermite factor for ETRU of
√
|q|.

8.3 Comparing LN and LE

Note that for N ′ = 2N , the NTRU and ETRU lattices have the same dimension.

However, the smaller size of |q| reduces the ratio of the length of the expected shortest

vector to the length of the target vector for LE . Comparing (8.4) with (8.6) with

q′ ∼ 8
3 |q| yields

cN ∼ 4

3
cE .

Consequently one expects that ETRU will have the stronger lattice for the same di-

mension. Alternately, comparing Hermite factors supports the same hypothesis: that

LE is more resistant to lattice attack than is LN .

To test their lattice strength, we generated repeated lattice attacks on each of the

ETRU and NTRU lattices at comparable parameter sets.

For each parameter set, and each of several gradually increasing values of N , we

generated 1000 pairs of keys (f, g). We then applied BKZ reduction with a fixed block

size of 10 to the resulting lattice. The attack was considered successful only if the

resulting lattice basis contained a suitably short vector. We recorded the rate of success

of these attacks, that is, the percentage of the 1000 cases for which the attack yielded

a potential key.

1 The isometric embedding of Z[ω] into C was chosen in [25] instead, but it was shown in
[17] that as the resulting lattice is not integral, the corresponding LLL and BKZ attacks are
significantly slower and less effective for the attacker.
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We present the comparison of two pairs of matched parameters in Figure 5: NTRU

at q′ = 1024 versus ETRU at q = 383, as well as NTRU at q′ = 2048 vs ETRU at

q = 761. In each case, the ETRU lattice shows equal or greater resistance to lattice

Fig. 5 ETRU vs NTRU lattice strength tests. Comparison of success rate of BKZ attack
as a function of (half the) lattice dimension for ETRU (N, q, p = 2, r = 2/3) and NTRU
(N ′ ∼ 2N, q′, p′ = 3, r = 2/3), for two pairs of comparable moduli, |q| ∼ 3

8
q′.

attack as the dimension of the lattice increases. We observe that the success profile of

the BKZ attack on the ETRU lattice is very uniform, in contrast to the NTRU lattice,

where BKZ fails on some inputs for some isolated small values of N ′. Nevertheless, the

overall tendency observed for both lattices (and typical of NTRU lattice attacks [8]) is

the existence of a point of sharp decline in BKZ attack success, after which the attack

consistently fails. We see that the dimension of lattice at which this point occurs for

ETRU is slightly lower than its NTRU counterpart, and that for similar-sized lattices,

ETRU exhibits the greater resistance to lattice attack overall.

We summarize the results of our repeated lattice attacks in Table 5 by giving the

interval in which the point of sharp decline (measured as the point at which BKZ

succeeds half the time) occurred, for each of our tests. We see that LE thwarts the

lattice attack at a smaller dimension than does LN .

These tests suggest that, as anticipated, an ETRU lattice shows some greater re-

sistance to lattice attacks than does a corresponding NTRU lattice. Lattice attacks
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ETRU N N ′ = 2N NTRU N ′

q = 47 [31, 35] [62, 70] q′ = 128 [73, 83]

q = 99 + 7ω [35, 41] [70, 82] q′ = 256 [83, 91]

q = 191 [41, 47] [82, 94] q′ = 512 [97, 103]

q = 383 [53, 57] [106, 114] q′ = 1024 [117, 123]

q = 761 [53, 57] [106, 114] q′ = 2048 [113, 127]

Table 5 Summary of results of BKZ tests on several pairs of comparable q, q′ (6.2) for ETRU
and NTRU, with r = 2/3. Given in each case is the interval of values of N and N ′ prior to
which BKZ always succeeded in at least 50% of the trials and after which BKZ always failed
in at least 50% of trials. The dimension of the lattice in each case is 4N and 2N ′, respectively.
We compute 2N , which is to be compared with N ′. Note that |99 + 7ω| ∼ 96.

are the strongest known attack on NTRU [9]; consequently, we assert that ETRU has

equal or greater security at N ′ ∼ 2N and q′ ∼ 8
3 |q| than does NTRU.

9 Conclusions and Future Work

We conclude with a summary of sample NTRU parameter sets and comparable ETRU

parameter sets in Table 6.

Security NTRU ETRU

level Name keysize N q rN r keysize

- NTRU167 1169 83 47 60 0.72 996

- NTRU503 4024 251 99 + 7ω 216 0.86 3514

128 APR2011 439 4829 223 761 144 0.65 4460

256 APR2011 743 8173 373 761 246 0.66 7460

256 EES1087EP2 11957 541 761 120 0.22 10820

Table 6 ETRU parameter sets (with p = 2) with comparable security to established NTRU
parameter sets (with p′ = 3). In each case, N is chosen to be prime near N ′/2 and q is chosen
to be an Eisenstein prime whose norm is close to 3

8
q′ (using Theorem 1). The ETRU keysize

was computed in Section 5.

The theory and evidence support that ETRU is a cost-effective, fast alternative to

NTRU, offering comparable or better security for smaller key sizes and higher speed.

The essential ingredient which offers ETRU such an advantage over prior alternative

NTRU variants is that the ring Z[ω] has greater density of elements than rings such

as Z[i] or M2(Z), and its multiplication, although algebraically more complex, is com-

putationally simpler per pair of integers. The relatively large number of units in Z[ω]

not only provides resistance against chosen ciphertext attacks, but also reduces the

expected size of the coefficients in any convolution product, thus reducing the proba-

bility of decryption failure. The use of Z[ω] also provides a nontrivial improvement to

NTRU’s resistance to lattice-based attacks due to the lower value for |q|.
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There are many further directions to pursue. It would be interesting to adapt the

meet-in-the-middle attack presented in Section 7 to search for g = g1+g2, which lies in

a smaller sized key space already; the attack described is unable to exploit the restricted

nature of the coefficients of g to achieve a lower complexity. It would be interesting to

adapt the hybrid attack proposed by Howgrave in [14] to ETRU, particularly in light

of the slightly smaller key space size of ETRU.

Recent progress has been made on the effective extrapolation of the security of a

given random lattice in the face of BKZ and BKZ 2.0 reduction [7,3]. In particular,

the work of Y. Chen and P.Q. Nguyen includes a simulation algorithm which predicts

the number of iterations and blocksize of BKZ 2.0 required to find a suitably short

vector, as well as means to compute the cost of running this algorithm. This is a

vast improvement over the extrapolations from small blocksize used in, for example,

[10]. However, as the authors take care to point out, their algorithm is designed for a

random lattice and may not apply to LN . Determining its analogue for ideal lattices

in general or NTRU-like lattices in particular would solidify our understanding of the

true practical security of NTRU and its analogues.

It would be interesting to further explore the use of the FFT, as discussed in

Section 4.1, to speed up convolution in ETRU. This implies choosing parameters so

that N divides |q|2 − 1. Since |q| ∼ 6rN implies |q|2 ∈ O(N2), we can expect to find

pairs (N, q) with the necessary divisibility properties which also meet the conditions

specified in this paper, close to any target size of N .

In this paper we restricted our comparison to the basic model. Optimized NTRU

also chooses g and φ to be more sparse than f , for greater efficiency, and f of the

form 1+pF to remove one convolution in the decryption process; these may be equally

applied to ETRU. One should also analyse, in the ETRU setting, the padding schemes

employed in optimized NTRU, as well as adapting to this case the hash functions

evaluated on the message m in the choice of the randomizing element φ.

Stehlé and Steinfeld [31] recently proposed modifications to NTRU under which

the resulting system can be proven to be CPA-secure (with certain constraints on

the parameters, and assuming the hardness of the worst-case SVP on certain ideal

lattices). In particular, the most significant of these modifications — replacing the

modulus polynomial XN − 1 with the irreducible polynomial XN + 1, N prime —

makes the resulting NTRU ring into the ring of integers of a cyclotomic field, where all

the results of [21] are shown to hold. To generalize this proof of security to an ETRU

variant, one must determine if those results extend also to cyclotomic extensions of

other number fields (in particular the number field Q[ω]). (We note that in fact many

of the results in [21] are shown to hold in the much broader setting of rings of algebraic

integers.) Proving the security of such an ETRU-variant would support the thesis that

the introduction of the Eisenstein integers does not itself introduce any new weakness

to the NTRU cryptosystem.

More generally, extending NTRU’s base ring to other rings of algebraic integers

(in particular those corresponding to cyclotomic fields) holds much promise. The chal-

lenge lies in choosing a division algorithm whose remainders are small enough to avoid

decryption failure. As mentioned in Section 3, the CVP method on Z[ω] used here

gives the optimal solution for 2 dimensions, but does not directly generalize to higher

dimensions.
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