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Abstract

We propose a formulation for the homeomorphism problem for

open n-dimensional manifolds and use the Kerekjarto classification

theorem to solve this problem for n = 2.

1 Introduction

One of the most important problems in the topology of manifolds is the
homeomorphism problem, which asks for a given dimension n whether there
is an algorithm to decide if two compact n-dimensional PL manifolds are
homeomorphic. It is easy to show that the answer is yes for n = 1. For
n = 2, the answer is also yes, thanks to the classification of surfaces. For
n = 3, the problem is much more difficult; a positive answer follows from
Perelman’s proof [3, 5, 4] of Thurston’s geometrisation conjecture as well as
earlier work (see e.g. [1, Section 1.4] and the references within.) When n ≥ 4
the answer is negative [2].

In this paper we consider open, i.e. noncompact (but paracompact) man-
ifolds. The homeomorphism problem as formulated above does not make
sense, because in general open manifolds are not defined by finite data which
one can feed into a computer. For compact manifolds, a consequence of a
positive answer to the homeomorphism problem in dimension n is that one
can make a list M0, M1, . . . of compact n-manifolds, such that any compact
n-manifold is homeomorphic to exactly one member of the list. When we
consider open manifolds of dimension n > 1, such a list cannot exist, because
there are uncountably many n-manifolds (see Appendix A.)

To deal with this issue, we restrict attention to manifolds which are gener-
ated by a simple recursive procedure. First we make the following definition.

Definition. Let n ≥ 1 be a natural number. A topological n-automaton is a
triple X = ((X0, . . . , Xp), (C1, . . . , Cp), (f1, . . . , fq)) where
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• p, q are nonnegative integers;

• for each k, Xk is a compact triangulated n-dimensional manifold-with-
boundary, called a building block ;

• for each k ≥ 1, Ck is a connected component of ∂Xk, hereafter called the
incoming boundary component of Xk. The other boundary components
of the building blocks, including all boundary components of X0, if any,
are called the outcoming boundary components;

• for each i, there exist k, l with k ≤ l such that fi is a simplicial home-
omorphism from some outcoming boundary component of Xk onto Cl;
fi is called an arrow ;

subject to the condition that every outcoming boundary component is the
domain of exactly one arrow.

An example of topological automaton is given in Figure 1.

X0 X1

X2

C1

C2

f1

f2

f3

f4

Figure 1: A topological 2-automaton X

To any topological n-automaton X we associate an n-dimensional mani-
fold M(X ) by starting with X0 and ‘following the arrows’ to attach copies of
the various building blocks. The idea is simple, but the formal definition is
rather awkward, since we must specify an order in which the building blocks
are attached, and keep track of the copies of the building blocks that have
already been used. To this effect, note that by the last condition, the order-
ing of the fi’s induces a linear ordering L on the set of outcoming boundary
components.

2



Let X be a topological n-automaton. We first define inductively a se-
quence of triples {(Ms, φs, Ls)}s∈N where for each s, Ms is a compact n-
manifold-with-boundary, φs is a collection of bijections from the components
of ∂Ms to outcoming boundary components of X , and Ls is a linear ordering
of the components of ∂Ms. For each 1 ≤ k ≤ p we generate a sequence of
copies of Xk by setting Xm

k := Xk × {m} for each nonnegative integer m.
By abuse of notation, we still denote by fi the homeomorphisms between the
various components of the ∂Xm

k ’s induced by fi. We define M0 to be X0, φ0

to be the set of identity maps of the components of ∂X0, and L0 is induced
by L.

Assume that the triple {(Ms, φs, Ls)} has been defined. Take the first
component C of ∂Ms, as given by Ls. Using φs, we can identify C to some
outcoming boundary component of some Xk. Then by hypothesis there is a
unique fi with domain C. Let Ck′ be the range of fi. Take the first copy
of Xk′ which has not already been used in the construction, and attach it
to Ms along fi. Then repeat the operation for all components of ∂Ms, the
order being determined by Ls. The resulting manifold is Ms+1. The set
of homeomorphisms φs+1 is determined by the identification of each added
manifold with some building block. The ordering Ls+1 is deduced from Ls

and L in a lexicographical manner.
By construction, there is a natural inclusion map from Ms to Ms+1. Thus

the Ms’s form a direct system. We define M(X ) as the direct limit of this
system. See Figure 2 for an example.

We can now state the main theorem of this paper, which can be thought
of as a solution to the homeomorphism problem for open surfaces:

Theorem 1.1. There is an algorithm which takes as input two topological 2-
automata X1,X2 and decides whether M(X1) and M(X2) are homeomorphic.

The proof of Theorem 1.1 relies essentially on the classification theorem
for possibly noncompact surfaces, due to Kerekjarto and Richards [6]. We
now recall the statement of this theorem.

Let F be a possibly noncompact surface without boundary. The classical
invariants which are used in the statement of the classification theorem are
the genus, the orientability class, and the triple (E(F ), E ′(F ), E ′′(F )) where
E(F ) is the space of ends of F , E ′(F ) is the closed subspace of nonplanar
ends, and E ′′(F ) is the closed subspace of nonorientable ends. Here is the
statement of the classification theorem:

Theorem 1.2 (Classification of surfaces, Kerekjarto,Richards [6]). Let F1, F2

be two surfaces without boundary. Then F1, F2 are homeomorphic if and only
if they have same genus and orientability class, and (E(F1), E

′(F1), E
′′(F1))

is homeomorphic to (E(F2), E
′(F2), E

′′(F2)).
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Figure 2: The surface associated to X

Recall that a surface F is planar if every embedded circle in F separates.
A planar surface F has genus 0, is orientable, and E ′(F ) = E ′′(F ) = ∅. Thus
planar surfaces are classified by their space of ends.

A topological 2-automaton is called planar if all of its building blocks are
planar. This is equivalent to requiring that the associated surface should be
planar.

The paper is structured as follows: in Sections 2 and 3, we deal with the
planar case, i.e. we give an algorithm to decide whether the surfaces associ-
ated to two planar topological 2-automata are homeomorphic. In Section 2,
we show how to associate to a planar topological 2-automaton X a combina-
torial object T (X ), called an admissible tree, such that the structure of the
space of ends of M(X ) can be read off T (X ). In Section 3, we introduce the
notion of a reduced tree, which is a kind of normal form for T (X ), and prove
Theorem 1.1 in the planar case. In Section 4, we explain how to generalize
this construction in order to prove Theorem 1.1 in full generality. Finally, in
Appendix A, we indicate a construction of uncountably many open surfaces
which are pairwise nonhomeomorphic.

Acknowledgements The author would like to thank Gilbert Levitt, Eric
Swenson, and Panos Papazoglu for useful conversations.
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2 From automata to admissible trees

Let X be a planar topological 2-automaton. We start by forming the directed
graph G′ whose vertices are the building blocks and whose edges are the
arrows. An arrow is called a loop if its domain and range lie in the same
building block.

In order to describe the space of ends of the surface M(X ), take a finite
alphabet A with as many letters as arrows in X , and assign a letter to each
arrow. We give the set AN of infinite words in A the product topology. The
space of ends of the surface M(X ) is homeomorphic to the subset E ⊂ AN

consisting of words which can be read by starting from X0 and following the
arrows.

To each finite word w = a1 · · ·an ∈ E we can associate the number k such
that w leads to Xk, and the subset Ew of E of words whose prefix is w and
whose other letters correspond to loops around Xk. There are three cases: if
there is no such loop, then of course Ew is empty; if there is one, then Ew is
a singleton; otherwise, Ew is a Cantor set, no matter how many loops around
Xk there are. This follows from the well-known fact that the Cantor set is
the only totally discontinuous compactum without isolated points. Hence we
see that the number of loops around some building block is irrelevant as soon
as it is greater than or equal to 2.

We are going to use this observation in order to associate to a planar
topological 2-automaton X a simpler combinatorial structure from which the
space of ends of M(X ) can be reconstructed. To this end, we introduce three
formal symbols ∗, O, Θ. To a planar topological automaton X we associate
a decorated graph (G, f), where G is a finite directed graph endowed with a
base vertex, called the root, and f is a map from the set of all vertices of G

to the set {∗, O, Θ}, in such a way that the root has image ∗.
Vertices of G correspond to the building blocks Xk, the root being X0.

Edges of G correspond to arrows fi which are not loops. The image of a vertex
by f is ∗ (resp. O, resp. Θ) if there is no loop (resp. one loop, resp. two or
more loops) around the corresponding building block. We say that a vertex
is of type ∗, O, or Θ according to its image by f . A vertex different from the
root is called an ordinary vertex.

From the decorated graph (G, f) we can reconstruct the space of ends E

of M(X ) as follows. Set p := nO + 2nΘ, where nO (resp. nΘ) is the number
of vertices of G of type O (resp. of type Θ). Then we consider the alphabet
A = {a1, . . . , ap} and assign to each vertex v of T either a letter (if v is of
type O), an unordered pair of letters (if v is of type Θ), or nothing. Let L(G)
be the set of infinite words w on A that can be obtained according to the
following recipe: let c = v1 · · · vl be a finite injective path in G starting from
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the root. For each k ∈ {2, . . . , l − 1}, choose a finite (possibly empty) word
in the letter(s) assigned to vk; then choose an infinite word in the letter(s)
assigned to vl; then w is obtained by concatenating all those words. Finally,
L(G) is topologised as a subset of AN endowed with the product topology.

We denote by V the set of vertices of G.
We shall change the graph structure of G without changing the space of

ends. First we need a definition.

Definition. An admissible tree is a decorated graph, which is a tree, such
that the only vertex of type ∗ is the root.

The next task is to turn the graph G into a tree. If G is disconnected,
then we simply delete the connected components of G which do not contain
the root. Clearly, this does not change the space E.

If G is not a tree, then there exist three distinct elements x1, x2, y ∈ V

such that there is an edge e1 from x1 to y and an edge e2 from x2 to y.
Take y minimal with this property, i.e. farthest from the root as possible.
Thus a similar situation does not happen in the subgraph Y consisting of
the vertices accessible from y and the edges between them. Let x3, . . . , xp be
the other elements of W such that there is an edge ei going from xi to y for
each i (if any.) By minimality, the graph Y is a tree. We construct a new
decorated, rooted, oriented graph by introducing for each 2 ≤ i ≤ p a copy
(Yi, yi) of (Y, y), deleting ei and replacing it by an edge e′i connecting xi to
yi. An example of this operation is represented in Figure 3.

By repeating this construction finitely many times, we obtain a decorated,
rooted, oriented graph G′′ which is a tree. It may not be admissible, because
there might be vertices of type ∗ other than the root. If x is any such vertex,
let e be the edge leading to x (by the previous construction, there must be
exactly one), let x′ be the initial vertex of e, and let e1, . . . , ep be the edges
with initial vertex x (if any.) Modify G′′ by deleting the vertex x and the
edge e, and replacing each ei by an edge e′i with initial vertex x′ and same
terminal vertex as ei. See Figure 4 for an example of this operation.

Repeating this procedure finitely many times, we obtain an admissible
tree, which we call T (X ). The associated space L(T (X )) is homeomorphic
to L(G), hence to the space of ends of M(X ).

Given a planar 2-automaton X , the admissible tree T (X ) can be effec-
tively constructed from X . Furthermore, it follows from the construction
that if X1,X2 are two planar 2-automata, then M(X1) is homeomorphic to
M(X2) if and only if L(T (X1)) is homeomorphic to L(T (X2)).

Since the construction of T (X ) from X is effective, this reduces the pla-
nar case of Theorem 1.1 to the classification of admissible trees up to the
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Figure 3: Making the graph G into a tree

equivalence relation of homeomorphism of the associated topological space.
This classification is achieved in the next section.

3 The planar case

Let T1, T2 be two admissible trees. We say that they are equivalent if L(T1)
and L(T2) are homeomorphic. We say that they are isomorphic if there is
a type-preserving bijection between the set of vertices of T1 and that of T2

which respects the graph structure.
The goal of this section is to give an algorithm that determines whether

two admissible trees are equivalent. We introduce three moves that can be
used to simplify an admissible tree without changing its equivalence class.
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Figure 4: Making the tree admissible

Let T be an admissible tree. If v is a vertex of T , we denote by T (v) the
subtree consisting of v and its descendants.

Move 1 Let v be a vertex of T of type Θ. Let v′ be the father of v. Assume
that v′ is not the root, and that v is the only son of v′. Remove the edge
between v and v′ and replace v′ by v.

Move 2 Let v1 be a vertex of T . Let v2, v3 be two descendants of v1 such
that v2 is a son of v1, and v3 is not. Assume that the subtrees T (v2) and
T (v3) are isomorphic. Remove T (v2).
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Figure 5: Move 1

Move 3 Let v1 be a vertex of T . Let v2, v3 be two distinct sons of v1.
Assume that v1 is not the root, or that both v2 and v3 are of type Θ. Further
assume that the subtrees T (v2) and T (v3) are isomorphic. Remove T (v3).

The three moves are represented in Figures 5, 6, and 7 respectively.

Definition. An admissible tree is reduced if none of Moves 1–3 can be per-
formed. For ease of reference we say that an admissible tree has property
(Ri) if Move i is not possible.

We leave to the reader the tedious but elementary task of checking that
Moves 1–3 do not change the associated space L(T ) up to equivalence. We
then have the following proposition:

Proposition 3.1. There is an algorithm which to any admissible tree T

associates a reduced admissible tree equivalent to T ′.
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Figure 6: Move 2

Proof. Starting with T , apply Move 1 as much as possible, then Move 2 as
much as possible, then Move 3 as much as possible, then Move 1 again etc.
Each time a move is applied, the number of vertices of the tree goes down,
hence the process eventually stops.

The main result of this section is

Theorem 3.2. Two reduced admissible trees T1, T2 are equivalent if and only
if they are isomorphic.

The ‘if’ part is clear, so we only have to prove the ‘only if’ part. First we
make some definitions. Let L be a topological space. We define inductively
a sequence of subsets L−1, L0, L1, . . . of L, each Lk being endowed with an
equivalence relation, in the following way: first set L−1 := ∅. Assume that for
some p all Lk have been defined for k < p, together with their equivalence
relations. Then Lp is defined as the set of elements x ∈ L such that x 6∈⋃

k<p Lk, and there exists a closed subset K of L containing x, homeomorphic
to a point or a Cantor set, such that the following two properties are satisfied:

i. For every y ∈ K, if (yn) is a sequence converging to y, then yn eventually
belongs to K ∪

⋃
k<p Lk.
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Figure 7: Move 3

ii. For every y, z ∈ K, for each sequence (yn) of points of
⋃

k<p Lk be-
longing to a single equivalence class, if yn tends to y, then there is a
sequence (zn) tending to z, such that for each n, zn belongs to that
same equivalence class.

The equivalence relation on Lp is defined by saying that two points x, x′ ∈
Lp are equivalent if the following properties are satisfied:

i. x is isolated in Lp if and only if x′ is;

ii. for each sequence (xn) of points of
⋃

k<p Lk belonging to a single equiv-
alence class, converging to x, there is a sequence (x′

n) converging to x′,
such that for every n, x′

n is topologically equivalent to xn;

iii. for every sequence (x′
n) of points of

⋃
k<p Lk belonging to a single equiv-

alence class, converging to x′, there is a sequence (xn) converging to x,
such that for every n, xn is topologically equivalent to x′

n.
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This process may go on forever, or stop when Lp = ∅ for some p. In
general, there might be points of L which do not belong to any Lp. If x ∈ Lp

we say that x has depth p. Otherwise x has infinite depth. Also observe that
points of depth 0 are either isolated, or belong to some clopen Cantor subset
of L. In the latter case, they are condensation points of L, i.e. they do not
have any countable neighbourhood.

Next we extend the definition of topological equivalence to points which
belong to possibly different topological spaces.

Definition. Let (L, x) and (L′, x) be pointed topological spaces. We say
that x is topologically equivalent to x′ if they have same (finite) depth p, and
same topological type, the latter notion being defined inductively on p in the
following way: if p = 0, then we say that x have same topological type if
they are both isolated or both condensation points; if p ≥ 1, assuming the
equivalence relation has been defined for points of depth < p, we say that x

and x′ have same topological type if the following conditions are satisfied:

i. x is isolated among points of depth p if and only if x′ is;

ii. for every sequence (xn) of points of depth < p, belonging to a single
equivalence class, converging to x, there is a sequence (x′

n) converging
to x′, such that for every n, x′

n is topologically equivalent to xn;

iii. for every sequence (x′
n) of points of depth < p, belonging to a single

equivalence class, converging to x′, there is a sequence (xn) converging
to x, such that for every n, xn is topologically equivalent to x′

n.

Next we apply this to L = L(T ) for some admissible tree T and make a
few elementary remarks.

Let T be an admissible tree. If v is a vertex of T , we denote by Lv the set
of words in L(T ) which have infinitely many letters corresponding to v. For
every ordinary vertex v, any two elements of Lv have the same depth and
are equivalent. Thus it makes sense to talk about the depth of a vertex, and
we have an equivalence relation on vertices.

If x ∈ Lv for some leaf v of T , then x is isolated or belongs to some
Cantor clopen subset of L. Thus v has depth 0. If v is an ordinary vertex of
T which is not a leaf, and all descendants of v have finite depth, then v has
finite depth, equal to M or M +1, where M is the maximum of the depths of
the descendants of v. The former possibility is possible only if v is equivalent
to one of its sons. This implies that every ordinary vertex has finite depth,
and depth is nonincreasing along paths in the tree starting from the root and
going to the leafs. It turns out that for reduced trees, it is strictly decreasing.
This will be a key point in the proof.
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Proposition 3.3. For every integer p ≥ 0, the following assertions hold:

i. Let T be a reduced tree and v be an ordinary vertex of T . If v has depth
p, then every descendant of v has depth strictly less than p.

ii. Let T1, T2 be reduced trees. For i = 1, 2 let vi be an ordinary vertex of
Ti. If v1 is topologically equivalent to v2 and has depth p, then T1(v1)
is isomorphic to T2(v2).

Proof. The proof is by induction on p. First we deal with the case p = 0. If
Assertion (i) does not hold, let (T, v) be a counterexample with v minimal,
i.e. as close to the leaves as possible. Then v is not a leaf, and has only leaves
as descendants. If some son of v has type O, then every element of Lv is an
accumulation point of distinct isolated points, contradicting the assumption
that v has depth 0. Hence every son of v is of type Θ. By (R1), v has at
least two sons, and by (R3) it has at most one. This is a contradiction.

This proves in particular that the ordinary vertices of depth 0 of a reduced
tree are exactly the leaves. From this, Assertion (ii) in the case p = 0 is
immediate.

Let p ≥ 1. Assume that the Proposition holds for all k < p. We prove
Assertion (i) by contradiction, taking again a minimal counterexample (T, v),
with v of depth p. By monotonicity, there must be a son v′ of v which also
has depth p. As remarked earlier, v′ must be equivalent to v. More precisely,
letting x be a point of Lv and (yn) be a sequence of points of Lv′ converging
to x, there must exist a Cantor set K ⊂ L containing x and almost all the
yn, such that all points of K are equivalent.

Claim. The vertex v′ has type Θ.

We prove the claim by contradiction. If v′ has type O, then the only way
to construct a Cantor set containing infinitely many points of Lv′ is to use a
descendant of v′ of type Θ. By minimality of v, every descendant of v′ has
depth < p, so a Cantor set K with the above properties cannot exist. This
proves the claim.

We proceed with the proof of Assertion (i). By Property (R1), v′ has at
least one sibling v′′. Suppose that v′′ has depth < p. Since v′′ can be used to
produce an injective sequence of points converging to x, and v is equivalent to
v′, there must exist a descendant v′′′ of v′ equivalent to v′′. By Assertion (ii)
of the induction hypothesis, T (v′′) is isomorphic to T (v′′′). This contradicts
(R2). Hence v′′ has depth p.

Claim. The trees T (v′) and T (v′′) are isomorphic.
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Once the claim is proved, there is an immediate contradiction with (R3).
Let us prove the claim.

First note that v′′ and v′ are both equivalent to v. Hence v′ is equivalent
to v′′. In particular v′′ also has type Θ. We shall show that for each son w′

of v′ there is a son w′′ of v′′ such that T (w′) is isomorphic to T (w′′). Then by
symmetry, the same will be true for v′ and v′′ exchanged, and using the fact
(implied by (R3)) that in a reduced tree the isomorphism type of a T (v′) is
determined by the type of v′ and the isomorphism type of the trees generated
by its sons, the claim will follow.

Let w′ be a son of v′. By minimality of v, w′ has depth < p. Since v′ is
equivalent to v′′, there is a descendant w′′ of v′′ which is equivalent to w′. By
Assertion (ii) of the induction hypothesis, T (w′) and T (w′′) are isomorphic.
There remains to show that w′′ is a son of v′′.

If not, we construct sequences w′
i, w

′′
i of vertices of T in the following way:

set w′
0 := w′ and w′′

0 := w′′. Let w′′
1 be the son of v′′ who is an ancestor of w′′.

Arguing as above, we get a descendant w′
1 of v′ such that T (w′

1) is isomorphic
to T (w′′

1). After finitely many steps, this construction stops, with some w′
k

being a son of v′, or some w′′
k being a son of v′′. At the last stage we obtain

a contradiction with (R2). This completes the proof of the claim, hence that
of Assertion (i).

The proof of hereditarity of Assertion (ii) is based on similar arguments:
let (T1, v1) and (T2, v2) satisfy the hypothesis. By Assertion (i), we know
that all descendants of v1 and v2 have depth < p. Reasoning as above, we
show that v1 has type O if and only if v2 has, and for every son v′

1 of v1 there
is a son v′

2 of v2 such that T1(v
′
1) is isomorphic to T2(v

′
2). By rule (R3) this

is enough to guarantee that T1(v1) is isomorphic to T2(v2).

Proof of Theorem 3.2. Let T1, T2 be reduced admissible trees whose associ-
ated topological spaces are equivalent. An argument similar to that used in
the proof of Part (ii) of Proposition 3.3 shows the following Lemma:

Lemma 3.4. The isomorphism types of the trees generated by the sons of
the roots of T1, T2 are the same.

By rule (R3), each type of subtree with ancestor of type Θ can occur at
most once. This need not be true for types of subtrees with ancestor of type
O. However, each son of the root of type O contributes a single point, so the
number of such points is invariant under homeomorphism. This concludes
the proof of Theorem 3.2.
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4 The general case

In this section, we indicate how to adapt the proof from the planar case to
the general case.

First, instead of the simple set {∗, O, Θ}, we introduce the infinite set S :=
{∗i, ∗

c
i , ∗∞, ∗c

∞, O, Oh, Oc, Θ, Θh, Θc}, where i takes all nonnegative integer
values in ∗i, and all positive integer values in ∗c

i . If some vertex of a decorated
graph has type ∗i, ∗

c
i , ∗∞ or ∗c

∞, then we say that this vertex has starred type.
We form the decorated graph (G, f) from the directed graph underlying

the automaton by assigning to each building block Xk a symbol in S, in
the following way: if there is no loop around Xk, then we put ∗i if Xk is
orientable of genus i, and ∗c

i if Xk is nonorientable with i cross-caps; if there
is one loop around Xk, then we put O if Xk is planar, Oh if it is orientable,
but not planar, and Oc if it is nonorientable; if there are two or more loops,
we put Θ if Xk is planar, Θh if it is orientable but not planar, and Θc if it is
nonorientable.

Then we modify the decoration to take into account the fact that the
subsets of nonplanar ends and nonorientable ends are closed in the set of
ends: if some vertex of type ∗i has a descendant of type Oh or Θh, but no
descendant of type Oc or Θc, then we change its label to ∗∞. If some vertex
of type ∗i or ∗c

i has a descendant of type Oc or Θc, then we change its label
to xc

∞. If some vertex of type O (resp. Θ) has a descendant of type Oh, Θh, ∗i

or ∗∞, but no descendant of type ∗c
i , Oc, or Θc, then we change its type to

Oh (resp. Θh). Lastly, if some vertex of type O or Oh (resp. Θ or Θh) has a
descendant of type Oc, Θc, ∗c

i , or ∗c
∞, then we change its type to Oc (resp. Θc).

Next we modify the decorated graph in order to make it a tree, by dupli-
cating some of its parts. This is done exactly as in the planar case.

The next task is to make the tree admissible, which in this context means
that only the root has starred type. This involves collapsing some edges of
the tree G and merging some vertices. More precisely, we apply recursively
the procedure of merging the starred vertices with their fathers. This is done
according to two rules: first, when a vertex of starred type is merged with
a vertex of type T that is not starred, then the resulting vertex has type T .
Otherwise let T1 be the type of the father, T2 be the type of the son, and T3

be the type of the resulting vertex. If T1 = ∗i and T2 = ∗j , then T3 = ∗i+j; if
T1 = ∗c

i , and (T2 = ∗j or T2 = ∗c
j), then T3 = ∗c

i+j; if T1 = ∗∞, then T3 = ∗∞;
if T1 = ∗c

∞, then T3 = ∗c
∞.

We recover the topological invariants of M(X ) from the admissible tree
T (X ) in much the same way as in the planar case. First we read the genus
(finite or infinite) and orientability class of M(X ) on the image of the root.
Next, if T is an admissible tree, we make the following definitions. The space
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of ends L(T ) is defined as in the planar case by treating every vertex of type
Oh or Oc as if it were O, and every vertex of type Θh or Θc as if it were
Θ. The subspace of nonplanar ends L′(T ) is defined similarly, using only the
subtree consisting of the root and the vertices of type Oh, Θh, Oc and Θc.
The subspace of nonorientable ends L′′(T ) is again defined similarly using
only the root and the vertices of type Oc and Θc.

We say that two admissible trees T1, T2 are equivalent if they have same
genus and orientability class, and the triple (L(T1), L

′(T1), L
′′(T1)) is home-

omorphic to (L(T2), L
′(T2), L

′′(T2)).
Next we define reduced trees. This is done using three moves which

extend the moves used in the planar case. Moves 2 and 3 are exactly the
same as in the planar case. Only Move 1 needs the following adjustment:

Move 1’ Let v be a vertex of T of type Θ (resp. Θh, resp. Θc). Let v′ be
the father of v. Assume that v′ is not the root, and that v is the only son of
v′. Further assume that v′ has type O or Θ (resp. Oh or Θh, resp. Oc or Θc.)
Remove the edge between v and v′ and replace v′ by v.

Let T be an admissible tree. If none of Moves 1’, 2, 3 can be performed,
we say that T is reduced. Then we have the following extension of Proposi-
tion 3.1, which is proved in the same way:

Proposition 4.1. There is an algorithm which to any admissible tree T

associates a reduced admissible tree equivalent to T ′.

Theorem 3.2 extends to the following result:

Theorem 4.2. Two reduced admissible trees T1, T2 are equivalent if and only
if they are isomorphic.

The proof of Theorem 4.2 is similar to that of Theorem 3.2. From the
construction, it is clear that two isomorphic trees are equivalent. For the
converse, we first need to adapt the notion of depth and equivalence from
topological spaces to triples of topological spaces.

Let (L, L′, L′′) be a triple of topological spaces, where L′′ ⊂ L′ ⊂ L and
L′, L′′ are closed. We define inductively a sequence of subsets L−1, L0, L1, . . .

of L, each Lk being endowed with an equivalence relation, in the following
way: first set L−1 := ∅. Assume that for some p all Lk have been defined
for k < p, together with their equivalence relations. Then Lp is defined as
the set of elements x ∈ L such that x 6∈

⋃
k<p Lk, and there exists a closed

subset K of L containing x, homeomorphic to a point or a Cantor set, such
that the following properties are satisfied:

i. Either all points of K belong to L′ or none of them do;
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ii. Either all points of K belong to L′′ or none of them do;

iii. For every y ∈ K, if (yn) is a sequence converging to y, then yn eventually
belongs to K ∪

⋃
k<p Lk.

iv. For every y, z ∈ K, for each sequence (yn) of points of
⋃

k<p Lk be-
longing to a single equivalence class, if yn tends to y, then there is a
sequence (zn) tending to z, such that for each n, zn belongs to that
same equivalence class.

The equivalence relation on Lp is defined by saying that two points x, x′ ∈
Lp are equivalent if

i. x is isolated in Lp if and only if x′ is;

ii. x belongs to L′ if and only if x′ does;

iii. x belongs to L′′ if and only if x′′ does;

iv. for each sequence (xn) of points of
⋃

k<p Lk belonging to a single equiv-
alence class, converging to x, there is a sequence (x′

n) converging to x′,
such that for every n, x′

n is equivalent to xn, and

v. for every sequence (x′
n) of points of

⋃
k<p Lk belonging to a single equiv-

alence class, converging to x′, there is a sequence (xn) converging to x,
such that for every n, xn is equivalent to x′

n.

The definition of depth is the same as in the case of spaces, i.e. a point of
L has depth p if it belongs to Lp. Next we extend the definition of topological
equivalence to points which belong to possibly different topological spaces.

Definition. Let (L1, L
′
1, L

′′
1) and (L2, L

′
2, L

′′
2) be triples of topological spaces

as above. Let x be a point of L1 and y be a point of L2. We say that
x is topologically equivalent to y if they have same (finite) depth p, and
same topological type, the latter notion being defined inductively on p in the
following way: if p = 0, then we say that x, y have same topological type if
they are both isolated or both condensation points, x belongs to L′

1 if and
only if y belongs to L′

2, and x belongs to L′′
1 if and only if y belongs to L′′

2.
If p ≥ 1, assuming the equivalence relation has been defined for points of
depth < p, we say that x and y have same topological type if the following
conditions are satisfied:

i. x is isolated among points of depth p if and only if y is;
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ii. x belongs to L′
1 if and only if y belongs to L′

2;

iii. x belongs to L′′
1 if and only if y belongs to L′′

2;

iv. for every sequence (xn) of points of depth < p, belonging to a single
equivalence class, converging to x, there is a sequence (x′

n) converging
to x′, such that for every n, x′

n is topologically equivalent to xn;

v. for every sequence (x′
n) of points of depth < p, belonging to a single

equivalence class, converging to x′, there is a sequence (xn) converging
to x, such that for every n, xn is topologically equivalent to x′

n.

The same elementary remarks as in the planar case hold. In particular,
it makes sense to talk about the topological type of a vertex of an admissible
tree. As in the planar case, the key proposition is the following:

Proposition 4.3. For every integer p ≥ 0, the following assertions hold:

i. Let T be a reduced tree and v be an ordinary vertex of T . If v has depth
p, then every descendant of v has depth strictly less than p.

ii. Let T1, T2 be reduced trees. For i = 1, 2 let vi be an ordinary vertex of
Ti. If v1 is topologically equivalent to v2 and has depth p, then T1(v1)
is isomorphic to T2(v2).

We omit the proof of this proposition, which is almost identical to that
of Proposition 3.3. Then the proof of Theorem 4.2 is very close to the proof
of Theorem 3.2.

5 Concluding remarks

Our definition of a topological automaton is rather restrictive. It is possible
to broaden it, for instance by removing the restriction that k ≤ l in the last
condition. This creates technical problems, but does not seem to enlarge the
class of manifolds significantly.

At one extreme, one may think of associating a manifold to a Turing
machine. One simple-minded way to do this, say in dimension 2, is to start
with a disk; each time the Turing machine does something, add an annulus;
if the machine stops, glue in a disk. Then the resulting surface is compact if
and only if the Turing machine stops. Since the halting problem for Turing
machines is undecidable, the homeomorphism problem for surfaces arising
from this construction is undecidable, for a reason which has nothing to do
with the topological complexity of the objects involved.
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A Uncountably many surfaces

Proposition A.1. There exist uncountably many planar surfaces up to home-
omorphism.

Proof. We use a construction which was shown to us by Gilbert Levitt. To
any sequence A = (an)n∈N in {0, 1}N we associate a compact totally discon-
tinuous topological space AA in the following way: we start with a Cantor set
C and an arbitrary sequence x̄n of pairwise distinct points of C. We define
inductively spaces Xn by letting X0 be a single point x0 and Xn+1 be the
space consisting of a point xn+1 and a sequence of copies of Xn converging
to it. Then we set

AA := C ∪xn=x̄n

⊔

n∈N,an=1

Xn,

i.e. for each integer n such that an = 1, we attach Xn to C along the points
xn, x̄n.

We claim that AA and AA′ are homeomorphic only if A = A′. To see
this, observe that the set of condensation points of AA (i.e. the set of points
all of whose neighbourhoods are uncountable) is exactly C. Thus if there
is a homeomorphism f : AA → AA′ , then f must map C to C. The other
points have finite Cantor-Bendixson rank, and the rank is preserved by f ,
i.e. f sends isolated points to isolated points, limits of sequences of isolated
points to similar points etc. Thus if an = 1 for some integer n, then a′

n = 1
and f sends x̄n ∈ AA to x̄n ∈ AA′ . Conversely, if a′

n = 1 for some n, then
an = 1. Thus A = A′.
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